DII COE RTDC
 DRAFT

 11/3/99

DII COE Real Time Distributed Computing Requirements Document

I. General Component Features:

The DII COE RT component is based on the Object Management Group’s Real-Time CORBA 1.0 Specification. CORBA compliant products that have a roadmap to RT CORBA compliance are acceptable. Currently, the DII COE RTDC group is considering strategies for verifying conformance. As the scope of real-time effort continues to expand, other real-time middleware paradigms (including real-time message passing) will be considered and incorporated as required.

(Vote: 12/0/1 Date: 11/99)

II. Specific Component Requirements and Verification Strategy:

Some of the following features are guaranteed by conforming with RT CORBA 1.0. Others are outside the scope of the current specification.

Bounded blocking time in Object Request Broker operation:

The maximum interval during which an ORB operation may block higher priority operations shall be bounded and specified. RTDC component must not contribute to unbounded system blocking time.

Verification: Requirement will be difficult to prove; however, a level of confidence may be gained by reviewing potential blocking situations with vendors. Demonstrations can measure the least upper bound, if any, inversion introduced by low priority ORB operations upon high priority operations. (Vote: 14/0/1 Date:)

Mechanism for avoiding priority inversion and deadlocks:

Implementation shall provide mechanisms that can be used to avoid/bound priority inversion in a system and mechanisms that can be used in controlling system resource contention. These issues are addressed by conforming with the RT CORBA specification.

Amplification: This includes global recognition and communication of priorities. Priority scheme must include both the propagation of priorities in GIOP messages and priorities of the server tasks.

Verification: Run demonstrations that exercise a variety of distributed resource contention scenarios. (Vote:11/0/1 Date:)

Replaceable transport protocol:

RTDC component shall be able to use transport protocols in addition to TCP (TCP is used for IIOP). TCP generally lacks the predictability required for most real-time applications.

Amplification: The RT CORBA 1.0 specifies that multiple transports can be selected and are "implementation specific" by default. Using GIOP messaging over the selected transport some measure of interoperability. The OMG Pluggable Transport RFP (orbos/98-07-16) is an initiative to create an interface that facilitates introducing a real-time transport layer into the architecture. If that initiative is successful then it would provide an ideal solution. (CCDS comment) Replaceable communications protocols are the most flexible support that an ORB can provide. Since CCDS will be used in variety of ships (ship classes) utilizing different networking infrastructures, replaceable communications protocols are useful.

Verification: A level of confidence may be gained by running OW and CR over different selected protocols for comparison. (Vote: 12/0/1 Date:)

Priority-based queuing: Component shall order internal queues using an associated priority or scheduling parameter so that the server processes client request accordingly. Queuing should be FIFO within a single priority for fixed priority systems.

Verification: Difficult to verify other than getting insight from vendor on implementation design. (Vote: 12/0/1 Date:)

Support asynchronous message-based system architectures: Component should support four levels of synchronization for OW as specified in the CORBA Asynchronous Messaging Specification. A synchronous Remote Procedure Call (RPC) is not adequate in high performance applications.

Verification: Difficult to verify other than getting insight from vendor on implementation design. (Vote: 12/0/1 Date:)
Support reliable and unreliable unicast and multicast:

Ideal segment should support both reliable and unreliable unicast and unreliable multicast. Reliable multicast could be supported with a replaceable protocol.

Amplification: This capability would be implemented in systems where end to end latency, latency jitter, and CPU cost at endpoints scales no worse than linearly with both endpoint load and system-wide traffic.

Verification: Review documentation, get insight from vendor on implementation design. (Vote: Date:)

APIs should support reentrant method calls:

Performance requirements will imply that the RT CORBA APIs must support threads that are reentrant

(Requirement pending re-write)

Support bypassing marshal/de-marshal process:

(TO BE DELETED PENDING NOTIFICATION OF INDIVIDUAL PROGRAMS)

When communication is between objects running in the same process (or processes with mutually accessible memory), which are coded in the same language (and use same compiler), an optional build time capability to the bypass marshalling/de-marshalling of data between the objects shall exist to allow performance optimization.

(Straw vote to delete passed 8/99)
End to End Predictability:

The component shall provide the necessary mechanisms for controlling end to end predictability including an interface to transport Layer QoS.

Amplification: ORBs (RT & Non RT) should provide the ability to use Quality of Service (QoS) capabilities (e.g., RSVP, Differentiated Services, ATM QoS, IEEE 802.1p, Fibre Channel) to provide Guaranteed Quality of Service as defined in IETF RFC 2212. Real-time systems require determinism at the network communications layer. This can be achieved, in theory, with use of IETF Integrated Services model’s Guaranteed Delay Service as specified in RFC 2212. As a minimum, bounded communications delay must be available to ORB applications.

Verification: Review documentation. Develop tests that alter individual pieces that effect end to end predictability (transport, OS, etc.) while keeping the rest the same.

 (Vote: 12/0/1 Date: 11/3/99)
No software license manager in component:

Implementation shall not have any type of software license manager embedded in deliverable products.

Amplification: Intentional or inadvertent disabling of software products in critical systems can have a catastrophic effect.

Verification: Get insight from vendor regarding presence of license controls.

(Vote: 12/0/1 Date: 11/3/99)

Small Memory footprint for Core ORB and Services

Ideal segment should support a scalable memory footprint for the Core ORB and associated CORBA services.

Amplification: Many systems use single board computer applications that have memory and storage constraints.

Verification:

(Vote: Date:)
Persistent Bindings

Implementation shall support persistent bindings.

Amplification: Derived from performance and predictability needs. If objects are not expected to move to different locations during system operation this can provide useful performance improvements.

 Verification: Review documentation for persistent binding capabilities.
(Vote: Date:)
Load Balancing:

Ideal segment should support control of where system message format conversions are performed.

Amplification: This could be used to deal with localized overloads in a distributed process or the case where all processors in the system are not equally powerful (overloaded legacy boxes).

Verification: Get insight from vendor on implementation design.

(Vote: Date:)
Summary of User Real-Time Distributed Computing Requirements

The following is a summary of basic Real-Time Distributed Computing (RTDC) segment features. An "X" denotes that the program indicated, feels the feature is critical for a useable product. DNR = Did not respond, (AF) = Air Force, (A) = Army, (N) = Navy, (J) = Joint. Requirements with less than two votes are candidates for deletion.

Requirement
Tracking

Number
RS

(AF)
UE

(AF)
AW/B

(AF)
AW/E

(AF)
OE/U

(A)
CCDS

(N)
BG-

PHES
(N)
JASA

(J)
RSC

(AF)

JTT

(J)
Total
Priority

Bounded blocking time in Object Request Broker operation
AIRDC0048
X
X
X
X
DNR
X
X
X
X
X
9/9
1

Mechanism for avoiding priority inversion and deadlocks/ Global recognition and communication of priorities
AIRDC0047/ AIRDC0045
X
X
X
X

X

X
X
X
8/9
2

Priority-based queuing
AIRDC0046
X
X
X
X
DNR
X
X
X
X

8/9
2

Support asynchronous message-based system architectures
AIRDC0032
X
X
X
X
DNR
X
X
X
X

8/9
2

Replaceable transport protocol
AIRDC0049
X

X
X
DNR
X
X
X
X

7/9
5

Support reliable and unreliable uni-cast and multi-cast (rewrite)
N/A
X
X
X
X

X

X
X

7/9
5

No software license manager in segment
N/A
X
X
X
X

X

X
6/9
7

APIs should support reentrant threads (rewrite)
N/A
X

X
X

X

X

4/9
8

Support bypassing marshall/de-marshall process
AIRDC0051

DNR
X

X
X
X
4/9
8

"End to end" deadline guarantee
AIRDC0050
X

DNR
X

X
X

4/9
8

Interface to transport layer QoS
AIRDC0031
X

X

X

3/9
11

Core ORB and Services - Small Memory footprint
N/A

X
X
X
3/9
11

Persistent Bindings
N/A

X

1/9
None

Load Balancing
N/A

X

1/9
None

Support application-specific purpose-built memory manager (removed pending rewrite)
N/A

X

1/9
None

I. CORBA Capabilities/Services: Based on program inputs received to date, the following is a prioritization of required RT CORBA product capabilities and services for the target DII COE (5.0) release. The Tracking Number column maps to the Service responses to DII COE requirements call and the last column is a mapping to the DII COE Distributed Computing SRS where it exists. At least two programs must vote for requirement to be retained.

Program Reporting

Capability/Service
RSC
R/S
UE
AW/B
AW/E
OE/U
CCDS
JTT
BG
JASA
Average
Tracking Number
JTA 2.0

Ref.
JTA 3.0

Ref.
DC SRS

1st priority, “must have”

 IIOP4
1

1
1
1

1
1
1
1
1.00
AIRDC0052
2.2.2.2.2.4.2
2.2.2.2.2.4.2
3.2.3.3.1

 IDL compiler
1
1
1
2
2
2
1
1
1
1
1.30
AIRDC0053
*
*
3.2.3.3.1

 IDL Bindings:

 ANSI C,
 C++,
 Ada95
1

1
1
1

1

1?
1

1

1
1

1

1
25
1

1
1

1

2
1

1

1
1.00

1.00

1.29
AIRDC0054

AIRDC0054

AIRDC0055
2.2.2.2.2.4.2

WS.2.2.2.2.2
2.2.2.2.2.4.2

WS.2.2.2.2.2
3.2.1.6

3.2.1.6

3.2.1.6

 Static invocation interface
1

1
1
1

1
1
1
1
1.00
AIRDC0058

3.2.3.3.1

 Naming service4
1
1
2
1
1
2
1
1
1
1
1.20
AIRDC0061
2.2.2.2.2.4.2
2.2.2.2.2.4.2
3.2.3.3.2

 Event Notification services4
1
1
1
1
1
3
1
3
2
2
1.60
AIRDC0062
2.2.2.2.2.4.2
2.2.2.2.2.4.2
3.2.3.3.2

 Time service
2

1
1
1

1

2
2
1.43
AIRDC0064

2.2.2.2.2.4.2
3.2.3.3.2

2nd priority, “desired”

 IDL Bindings:

 Java
2
2
2?
1
1
26
2

1
2
1.75
AIRDC0057

2.2.2.2.2.4.2

WS.2.2.2.2.2
3.2.3.9.1

 Implementation repository
2

3
3
3

2

2
2
2.43
None

3.2.3.7.1

 Interface repository
2

3
1
1

3

2
2
2.00
AIRDC0060
2.2.2.2.2.4.2
2.2.2.2.2.4.2
3.2.3.7.2

 Trader service
2

2
2.00
None

2.2.2.2.2.4.2
3.2.3.3.3

3rd priority, “consider”

 Dynamic invocation interface
2

3
2
2

3

3
3
2.57
AIRDC0059
2.2.2.2.2.4.2
2.2.2.2.2.4.2
3.2.3.3.1

 Transaction service4
3

3
2
2

3

3
3
2.71
AIRDC0063
2.2.2.2.2.4.2
2.2.2.2.2.4.2
3.2.3.3.2

Deleted Requirements

 Ada83 IDL Binding ***

2
3
3
3

2

3
2.67
AIRDC0056
**
**
TBD

“Priority?” column: Indicate priority assignment by assigning 1,2, or 3, based on your programs needs. NOTE: Promotion to priority 1 requires consensus of the RTDC Sub-Committee/TWG. Adding additional Services is allowed. Highlighted capabilities have been promoted/demoted as of 4/19/99. *Not sure whether CORBA section on “OMG IDL Syntax and Semantics” satisfies this requirement. **Believe CORBA only has bindings for Ada95. ***Sub-Committee voted to drop requirement, pending TWG concurrence.

Capability/Service Issues:

a. IIOP must be very efficient to achieve low latency and high throughput that is comparable to ORB specific communication

protocols. The underlying infrastructure supporting CORBA (i.e., the RTOS, TCP/IP stacks, etc.) needs to be streamlined to

support Real-Time deterministic applications.
b. The JTA 2.0 requires the use of CORBA Naming, Event and Transaction services but these services are not designed for use in a real-time environment yet [RT CORBA Joint RFP orbos/98-10-05].

What new CORBA services would your program use if they were available?

Some desired services have not yet been standardized. Please identify those services that your program would strongly consider using if they were available.

Responding Program

Capability/Service
RSA
UE
AW/B
AW/E
OE/U
CCDS
BG
JASA
RSC
Average

System Mgmt Support: Initialization

1

1
1
1
1
1.00

Messaging Services
1
1
1
1

2
2
1
2
1.38

Broadcast/multicast: (Unreliable)
1
1
3
3
2
1

2
2
1.88

Broadcast/multicast: (Reliable)
1
2
1
1
3
1
2
1
1
1.44

Fault Tolerance
1
1
1
1

1
2
1
3
1.38

System Mgmt Support: Reconfiguration

1

2
1.50

Enhanced Time (New 11/98)

1

1.00

Note: 1. Table uses same priority definitions as Section II.

III. Some programs have found that certain CORBA services are underspecified and that specific semantics might need to be requested. On the lines below, please identify critical services that your program has found to be underspecified.
When you identify a service deficiency, please include name, phone number, and email address of a point of contact who can describe the problems encountered. We plan to use this information to guide others in the use of these services and to push for improved semantics in the OMG specs.

1. AWACS: APIs from Scheduling Service should be pushed into various RT CORBA services (e.g., memory management functions in the operating systems); POC for Service Deficiency: (name, phone #, email) Jonathan Bernhardt; jbern@mitre.org

V. Non-Technical Criteria: Please review and comment on this list of non-technical criteria affecting selection of CORBA products. What’s the relative importance of these issues to your program? What have we missed?

Scale of Importance to your program: 1 (high) to 5 (low)

Responding Program

Concern
RSA
UE
AW/B
AW/E
OE/U
CCDS
BG
JASA
RSC
Average

Vendor support to customers:

1
1
1
2
1

1
1
1.14

 Documentation

1
3
3
2
1
1
1
1
1.63

 Training

2
2
2
3
2
2
2
2
2.13

 “Help Desk” Support

2
1
1
4
2
2
2
2
2.00

Commitment by vendor to implement to a real-time standard

1
1
1
2
1
1
1
1
1.13

Responsiveness to problem reports and change requests

1
1
1
2
1
2
1
1
1.25

Planned product enhancements

2
2
2
2
1
2
1
1
1.63

Fall-back position in the event of vendor failure or withdrawal

2
2
2
1
1
2
1
1
1.50

Vendor viability and commitment
1
1
2
2
3
1
1
1
1
1.44

Non-entrapment. Application code must be portable to at least two credible vendor offerings, to allow customers to change, should that become necessary.

2
3
1
1
1.75

Development environment

2
1
1
1
2

2
2
1.57

Technical restrictions imposed by development environment

1
3
3
1
2
2
2
3
2.13

Availability of engineering services

1
1

2
3
3
2
2.00

Cost of development environment

2
3
3
2
2
2
2
3
2.38

COTS Source Code in escrow or possession

2
3
3
4
4
3
3
2
3.00

General Comments:

2. CORBA 2.2 baseline has been set by DCWG and is in JTA 3.0 (draft) however JTA 2.0 only mandates version 2.1

3. (UEWR Note) Fault tolerance and Damage tolerance:

· The terms Fault tolerance and Damage tolerance are often confused. Which do we need? In a combat system, one requires damage tolerance (to handle battle damage), while many sensors need only fault tolerance (because one usually has multiple sensors).

· Battle damage is usually massive, like an Exocet strike or a nearby depth charge causing multiple compartments to fill up with seawater. Faults are more like somebody tripping over a wire and breaking it. Warships require damage tolerance. Fault tolerance is not sufficient.

· Damage Tolerance (DT) versus Fault Tolerance (FT). In FT, failures are rare and uncorrelated in time and place, and recovery is often allowed to be slow. (Bit errors on comms are not considered failures.) In DT, failures are correlated in both time and place, and are often massive. (Power failures can appear like damage events, as multiple things fail at once.) Rapid recovery is often required. DT is *much* harder than FT, because fewer comforting assumptions can be made, and recovery must generally be *much* faster.

· Because FT is a special case of DT, if one has DT, one also has FT. The converse is not true: FT does not imply DT.

· DT, which touches everything (especially in a transport infrastructure), must be designed in from the start. It cannot be added later, or bolted on. Likewise, FT.

(BGPHES Note): Requirements and expectations need to be kept realistic. Several years ago it was a common belief that most systems would have migrated to Multi-Level Security operating systems with Trusted Computing Bases. The combination of technical challenges and alternate market driven priorities resulted in this migration not being cost effective. The Fleet driven IT-21 initiatives have demonstrated the continued importance of following market driven priorities and economies of scale. To expect ‘damage tolerance’ to emerge as a public sector product is unrealistic. The attached ‘wish lists’ should serve as evaluation criteria for the selection of the best available technologies. This should occur without the expectation that the technologies will be developed because they are requested, or, if available, will become cost effective to Implement).

4. There seems to be essentially no support of system-level (multi-box) debugging. The ability to read a clock in a few microseconds is required, as time-stamping is widely used, both for operational reasons, and to support system level debugging. Also needed is some kind of built-in event log and/or flight recorder. These timestamped event streams are correlated into a master chronology, allowing system activities to be understood and debugged.

5. System Integration. It's very common for a user mistake to cause the middleware to crash or otherwise misbehave, especially in realtime middleware and operating systems (because they must sacrifice armor for speed). Thus, one must have access to source code and an integrated debugger to track down and remedy such bugs in a timely manner.

Information Sources

ID
Program
POC Name/Email
Phone

RSA
R/SAOC
Colin Valentine/
val@mitre.org

UE
ESC/NDB, UEWR
David Eherenham/
eherenmand@hanscom.af.mil

Joe Gwinn/

gwinn@ed.ray.com
781.377.6699

AW/B
AWACS – Boeing
(US & International)
Cal Johnson/
CalvinB.Johnson@boeing.com
253.657.0391

AW/E
AWACS – ESC, Hanscom
Eric Hughes/
hughes@mitre.org
781.271.7486

OE/U
OE – UDLP
Keith E. Robbins/
keith@robbins-sw.com
408.248.0838

CCDS
CCDS
Tiffany Frazier/

tiff@mitre.org

Gautam Thaker/ gthaker@atl.lmco.com
703.883.5959

609.338.3907

JTT
Joint Tactical Terminal
Major Ed Mays/

Mays@mail1.monmouth.army.mil

Kenneth R Williams/

krwa@eci-esyst.com

JASA
JSWG Software

Michael Grieco/

Mjgrieco@jswg.org

Jeffrey Bryant/

Sanders Lockheed-Martin
301.483.6000 x2451

603.885.7074

BG
BGPHES
LCDR Fred Bednarski/

bednarsf@spawar.navy.mil
619.524.7369

RSC
CARS – DGIF
Stephen Johnson/ SJohnson@fallschurch.esys.com

John F. Masiyowski/
jmasiyowski@fallschurch.esys.com

703.560.5000 x4782

Additional comments:

(JSTARS Note) Al Sateriel (saterial@mitre.org) for the Joint STARS program: At this point in time, Joint STARS has no inputs to this survey since we have no real time requirements that are driving product selection in this area. Also, our current plans do not call for CORBA in our Level 5 architecture. Beyond Level 5, Hardpack (or any other IPT approved RT CORBA product) may be chosen, and it is for this reason, that we still want to acquire a DEC NT and possibly DEC Unix implementation of the Hardpack. JSTARS has been asked for an updated Requirements review. (Status: Pending Grieco 4/15/99)

4 For JTA compliance

5 Crusader/Grizzly

6 Bradley

� Ability for vendor to make specific and significant upgrades to product and fold upgrades into product line (e.g., we need for now, here is $X, deliver to us now and incorporate in general release by 2000).

3

