InfoBus 1.2 Synchronization Requirements

1 Purpose

The purpose of this document is to capture the synchronization requirements of the InfoBus 1.2 specification in a form that can be more readily used during software development and review activities. This document is not meant to expand on or alter the synchronization requirements already in the InfoBus Specification
; rather it is intended to capture and explain the requirements already in the specification.

2 Background

In any multithread implementation, synchronization issues can be difficult and costly to detect and repair. Review criteria can be effectively used during the development and peer review process to identify areas of concern.

3 Scope

This paper makes the assumption that InfoBus synchronization requirements are derivable from the InfoBus Specification and the online documentation. That is, we assume the InfoBus implementation does not alter the synchronization requirements. We did not examine the InfoBus implementation.

4 Checklist

Table 1 contains a list of all the classes and interfaces in the InfoBus Specification and documents their synchronization requirements. The order of presentation in Table 1 parallels the online InfoBus Java documentation. There is a row in the table for each Interface or Class and multiple rows if the object access properties of the methods differ. We have identified four distinct synchronization requirements they are:

1. The Interface or Class methods modify object state. For example, the setItemByCoordinates method in the ArrayAccess Interface sets a new value for an item at the indicated coordinates. The object variable(s) that is modified should be protected if the object can be accessed from multiple threads. This requirement can be tightened a bit: The object variable(s) that is modified should be protected if the variable can be directly or indirectly accessed from multiple threads. One approach to accomplishing this would be to protect modifiable local variables if a consumer can modify the data object, or if the producer modifies the data object after the object is placed on the InfoBus. If consumers are read-only and producers do not modify the data object after it is placed on the InfoBus, variable protection is not needed.

2. The Interface or Class methods only read object state. For example, the setItemByCoordinates method in the ArrayAccess Interface returns the DataItem corresponding to the given coordinates. Variable protection is only needed if side effects introduce local variable modification. For example, if any local variables are modified in the course of retrieving information, they may need protection.

3. The Interface gets called when a data item changes. For example, the dataItemValueChanged method inDataItemChangeListener Interface. Since these calls can occur asynchronously, with respect to the consumers or producer processing, variables that are modified by methods in this Interface should be protected.

4. The Interface represents database and supports the concept of a cursor or current database row. Since synchronization is difficult among multiple consumers, a safe policy is to only allow one consumer to access an individual object.

	Class / Interface
	Methods
	Object Access
	Synchronization Requirement and Notes

	ArrayAccess Interface
	setItemByCoordinates
	Modify
	1

	
	getDimensions, getItemByCoordinates, getsubdivide
	Read
	2

	DataItem Interface
	GetProperty, getSource, release
	Read
	2

	DataItemAddedEvent Class
	getChangedCollection
	Read
	2, Also see DataItemChangeEvent

	DataItemChangeEvent Class
	getSource , getChangedItem , getProperty
	Read
	2

	DataItemChangeListener Interface
	dataItemValueChanged, dataItemAdded, dataItemDeleted, dataItemRevoked, rowsetCursorMoved
	Unknown
	3, Also see InfoBusDataConsumer and InfoBusDataProducer

	DataItemChangeListenerSupport Class
	N/A
	N/A
	See, DataItemChangeListener Interfacer and DataItemShapeChangeListener Interface

	DataItemChangeManager Interface
	AddDataItemChangeListener, removeDataItemChangeListener
	Modify
	3, Also see DataItemChangeManagerSupport

	DataItemChangeManagerSupport Class
	N/A
	N/A
	Already thread safe

	DataItemChangeSupport Class
	
	
	Deprecated, See DataItemChangeManagerSupport

	DataItemDeletedEvent Class
	getChangedCollection
	Read
	2, Also see DataItemChangeEvent

	DataItemRevokeEvent Class
	None
	
	See DataItemChangeEvent

	DataItemShapeChangedEvent Class
	None
	
	See DataItemChangeEvent

	DataItemShapeChangeListener Interface
	dataItemShapeChanged
	Unknown
	3

	DataItemView Interface
	setViewStart, scrollView
	Modify
	2

	
	getViewStart, getView
	Read
	1

	DbAccess Interface
	All
	Modify
	4

	DefaultPolicy Class
	N/A
	
	None, Immutable

	ImmediateAccess Interface
	getValueAsString, getValueAsObject, getPresentationString
	Read
	2

	
	setValue
	Modify
	1

	InfoBus Class
	N/A
	N/A
	Already thread safe. Synchronize its calls to FireItemAvailable and fireItemRevoked

	InfoBusBean Interface
	N/A
	N/A
	See InfoBusBeanSupport Class

	InfoBusBeanSupport Class
	N/A
	N/A
	Already thread safe

	InfoBusDataConsumer Interface
	dataItemAvailable, dataItemRevoked
	Unknown
	3

	InfoBusDataConsumerProxy Class
	N/A
	N/A
	None, Delegated to parent

	InfoBusDataController Interface
	All
	Modify
	3

	InfoBusDataProducer Interface
	dataItemRequested
	Unknown
	3

	InfoBusDataProducerProxy Class
	N/A
	N/A
	None, Delegated to parent

	InfoBusEvent Class
	getDataItemName
	Read
	2

	InfoBusEventListener Interface
	N/A
	
	None, Abstract Interface

	InfoBusItemAvailableEvent Class
	getDataFlavors, requestDataItem, getSourceAsProducer
	Read
	2

	InfoBusItemRequestedEvent Class
	setDataItem
	Modify
	None, the InfoBus Class creates objects of this class.

	
	getDataFlavors, requestDataItem, getSourceAsConsumer
	Read
	2

	InfoBusItemRevokedEvent Class
	getSourceAsProducer
	Read
	2

	InfoBusMember Interface
	N/A
	N/A
	See InfoBusMemberSupport

	InfoBusMemberSupport Class
	N/A
	N/A
	Already thread safe

	InfoBusPolicyHelper Interface
	N/A
	N/A
	None, Immutable

	InfoBusPropertyMap Interface
	get
	Read
	2

	ReshapeableArrayAccess Interface
	setDimensions, insert, delete
	Modify
	1

	RowsetAccess Interface
	All
	Modify
	4

	RowsetCursorMovedEvent Class
	None
	
	See DataItemChangeEvent

	RowsetValidate Interface
	validateCurrentRow, validateRowset
	Read
	2

	ScrollableRowsetAccess Interface
	All
	Modify
	4

	Protect modified local variables if a consumer modifies the data object, or if the producer modifies data object after publication to the InfoBus.

Protect modified local variables if producer modifies data object after publication to the InfoBus.

Protect local variables.

Only allow single consumer access.

Table 1: InfoBus 1.2 Synchronization Requirements

5 Classes and Interfaces

This section details the synchronization requirements of the InfoBus Specification. It amplifies information presented in Table 1. The order of this section parallels the InfoBus specification as much as possible.

5.1 InfoBus

The information in this section of the document is from Section 2 of the InfoBus specification.

5.1.1 InfoBus Class

The following methods are of interest in this class.

5.1.1.1 fireItemAvailable & fireItemRevoked

A routine using the InfoBus class should synchronize its calls to FireItemAvailable and fireItemRevoked. From the InfoBus 1.2 Specification (as are other unspecified quotations):

“The InfoBus requires that when an available event for a particular data item name and producer is fired, it must be received by all listeners before the corresponding revoked event (i.e., a revoked event from the same producer with the same data item name) is fired.”

// THREADSAFETY: create a lock to prevent a REVOKE from being sent

// before the AVAILABLE has completed

synchronized (m_AvailRevokeInterlock) {

ib.fireItemAvailable(m_dataName, null, m_producerProxy);

}

// THREADSAFETY: use interlock to prevent REVOKE if AVAIL
// outstanding

synchronized (m_AvailRevokeInterlock) {

ib.fireItemRevoked(m_dataName, m_producerProxy);

}

5.1.2 InfoBusMember Interface

No InfoBus specific synchronization is necessary for this interface when the implementation of this interface is performed by javax.infobus.InfoBusMemberSupport.

“To facilitate the implementation of this interface, we supply a class called javax.infobus.InfoBusMemberSupport which provides all required methods and member data and which can be used directly by using the class as a data member. We strongly recommend that this class be used for the implementation, rather than rolling your own.”

5.1.3 InfoBusBean Interface

No specific synchronization is necessary for this interface when the implementation of this interface is performed by javax.infobus.InfoBusBeanSupport.

“… the InfoBusBean interface is accompanied by an implementation class, allowing the programmer to delegate method calls to the corresponding methods in InfoBusBeanSupport.” And ”The implementations of setInfoBus(), getInfoBus(), setInfoBusName(), and getInfoBusName() must be synchronized on the same Object to prevent more than one of these from running at a time in different threads.”

5.1.4 InfoBusMemberSupport Class

The class is already thread safe. Also see InfoBusMember Interface above.

5.1.5 InfoBusBeanSupport Class

This class is a thread safe implementation of the InfoBusBean Interface.

5.2 Events

The information in this section of the document is from Section 3 of the InfoBus specification.

“Events are sent by the InfoBus to listeners for each component on the bus. Three types of events are defined: InfoBusItemAvailableEvent - an event which is broadcast on behalf of a producer to let potential consumers know about the availability of a new data item through the InfoBus. InfoBusItemRevokedEvent - an event which is broadcast on behalf of a producer to let consumers know that a previously available data item is no longer available. InfoBusItemRequestedEvent - an event which is broadcast on behalf of a consumer to let producers know about the need for a particular data item that they may be able to supply. The three InfoBus events are subclasses of a common base class, each with methods needed for their particular task. The InfoBus class provides methods that create and broadcast these event objects on behalf of producers and consumers, including fireItemAvailable() and fireItemRevoked() for use by producers, and findDataItem() and findMultipleDataItems() for use by consumers.”

5.2.1 InfoBusEvent Class

This InfoBusEvent Class is the base class for InfoBus communication events. Its single method (DataItemRequested) does not have InfoBus specific synchronization requirements.

5.2.2 InfoBusItemAvailableEvent Class

The class is sent when an InfoBusDataProducer to notify an InfoBusDataConsumers that a named data item is available. The methods in this class (getDataFlavors, requestDataItem, and getSourceAsProducer) all read information from the event object. There are no InfoBus specific synchronization requirements when using this class.

5.2.3 InfoBusItemRevokedEvent Class

Objects of this class are sent on the behalf of a data producer to announce the revocation of a previously announced data item. There are no InfoBus specific synchronization requirements when using this class.

5.2.4 InfoBusItemRequestedEvent Class

An object of this class is sent on behalf of a data consumer to find a named data item. An object of this class is created by the InfoBus class and is distributed to data producers. Since the InfoBus class creates these objects they can be thought of as thread safe.

5.2.5 InfoBusEventListener Interface

This is a base Interface of the InfoBusDataProducer and InfoBusDataConsumer Interfaces. This interface is abstract so there are no InfoBus synchronization requirements.

5.2.6 InfoBusDataProducer Interface

This interface extends the abstract InfoBusEventListener interface and should be implemented by data producing classes. Since these calls can occur asynchronously, with respect to the producer’s processing, variables that are modified by methods in this Interface should be protected. The following methods are of interest in this interface.

5.2.6.1 dataItemRequested

The dataItemRequested method is called by the InfoBus class on behalf of a data consumer that is requesting a data item by name. Since it can be called from a number of threads, an InfoBus data producer should protect its internal data elements. There is only one method in this interface. For Example:

public void dataItemRequested (InfoBusItemRequestedEvent ibe) {

if (ibe == null) {

return;

}

String s = ibe.getDataItemName();

if ((null != s) && s.equals(m_dataName)) {

// THREADSAFETY: make our activity on a positive match thread safe

// NEVER USE OUR INFOBUS AS THE LOCK OBJECT

synchronized (m_dataInterlock){

if (m_dataItem == null) {

m_dataItem = new MonetaryDataItem(…);

}

ibe.setDataItem(m_dataItem);

}

}

}

5.2.7 InfoBusDataConsumer Interface

This interface extends the abstract InfoBusEventListener interface and should be implemented by data consuming classes. Since these calls can occur asynchronously, with respect to the consumer’s processing, variables that are modified by methods in this Interface should be protected. The following methods are of interest in this interface.

5.2.7.1 dataItemAvailable

The dataItemAvailable method is called by the InfoBus class on behalf of a data producer. Since dataItemAvailable is usually called from different thread, an InfoBus data consumer should protect its internal data elements. For Example:

Synchronized (m_dataLock){

// Test the retrieved data for interfaces we know how to parse

if (tmpData instanceof ImmediateAccess){

if (m_data instanceof DataItemChangeManager){

// unregister from an old data item before replacing

((DataItemChangeManager)m_data).removeDataItemChangeListener(this);

}

m_data = tmpData;

if (m_data instanceof DataItemChangeManager){

((DataItemChangeManager)m_data).addDataItemChangeListener(this);

}

labelData1.setText (getLocalizedString());

 }

// Test for other retrieval interfaces here if we want

}

5.2.7.2 dataItemRevoked

The dataItemRevoked method is called by the InfoBus class on behalf of a data producer. Since it can be called from a number of threads, an InfoBus data consumer should protect its internal data elements. This precaution is not reflected in source code that is supplied with the InfoBus 1.2 distribution.
5.2.8 Proxy Listener Classes

This set of classes includes the InfoBusDataConsumerProxy and the InfoBusDataProducerProxy Classes. Since the classes supplied with the InfoBus distribution dedicate processing to the proxy parent, synchronization should take place in the proxy parent rather than in the proxy listener classes.

5.3 Data Items

Data items are Java Objects that are passed by reference from a producer to a consumer by way of a request event or sub-items of collections. The information in this section of the document is from Section 4 of the InfoBus specification.

5.3.1 DataItem Interface

This interface provides identifying and descriptive information about a data item. Since this interface does not set data item variables multiple threads can usually call this interface without causing synchronization problems. However, variable protection is needed if side effects introduce local variable modification. For example, if any local variables are modified in the course of retrieving information, they may need protection.

5.3.2 DataItemView Interface

This interface supports optimized management of a view of the contents of a particular subset of records. A view represents the window of data that is currently visible to the consumer. Two of the methods (setViewStart and scrollView) modify value(s) local to the data item. Synchronization should be used if data items implementing this interface can be updated from multiple threads or if the data item can be updated after it has been published to the InfoBus.

5.3.3 ImmediateAccess Interface

A data item implements this interface to allow data values to be retrieved directly from calls to methods on this interface, returning an immediate rendering of the data as a String or Object. One of the methods (setValue) modifies data item local value(s) while the other three methods (getValueAsString, getPresentationString, and getValueAsObject) return data item values. Synchronization should be used if a data item’s setValue method is called and the object can be accessed from multiple threads.

5.3.4 ArrayAccess Interface

A data item implements this interface to allow access to collections of data items organized in an n-dimensional array. One of the methods (setItemByCoordinates) modifies value(s) local to the data item while two other methods (getDimensions, and getItemByCoordinates) return data item values. The final method (getsubdivide) returns an ArrayAccess. Synchronization should be used if a data item’s setItemByCoordinates method is called and the object can be accessed from multiple threads.

5.3.5 ReshapeableArrayAccess Interface

A data item implements this interface to allow a consumer to change the shape of an array, including changing the dimensions, the number of dimensions, or inserting or deleting all elements in a particular dimension. Synchronization should be used if data items implementing this interface can be updated from multiple threads or if the data item can be updated after it has been published to the InfoBus. Synchronization should be used if a data item’s setDimensions, insert, or delete method is called from multiple threads.

5.4 Database Access

Database access is a set of interfaces can be used for accessing data items in a manner similar to JDCB. These interfaces are used in addition to or instead of the previously discussed access interfaces. The information in this section of the document is from Section 5 of the InfoBus specification. Because these interfaces implement the concept of a cursor there should be, in general, a one to one mapping between data elements implementing the Database Access interface and consumers.
5.4.1 RowSetAccess Interface

A data item implements this interface to allow access to rows obtained from a data source, usually a relational database server. This interface contains methods to discover the number and type of columns, to get the next row, to obtain column values, and to insert, update and delete rows. Because this interface implements the concept of a cursor, synchronization should be used if data items accessed from multiple threads or if the data item can be updated after it has been published to the InfoBus. Since synchronization is difficult among multiple consumers, a safe policy is to only allow one consumer to access an individual object.

5.4.2 ScrollableRowsetAccess Interface

A data item implements this interface to extend RowsetAccess to represents the case in which the data provider can support moving the row cursor backwards and creating multiple cursors. Because this interface implements the concept of a cursor, synchronization should be used if data items accessed from multiple threads or if the data item can be updated after it has been published to the InfoBus. Since synchronization is difficult among multiple consumers, a safe policy is to only allow one consumer to access an individual object.

5.4.3 DbAccess Interface

A data item implements this interface to control the lifetime of a data item representing a rowset. Because this interface implements the concept of a cursor, synchronization should be used if data items accessed from multiple threads or if the data item can be updated after it has been published to the InfoBus. Since synchronization is difficult among multiple consumers, a safe policy is to only allow one consumer to access an individual object.

5.4.4 RowsetValidate Interface

A data item implements this interface to provide a means of validating the contents of a Rowset data item. This Interface does not have any interface related synchronization requirements.

5.4.5 RowsetCursorMovedEvent Class

There are no methods in this class. See the superclass DataItemChangeEvent for synchronization factors.

5.5 Monitoring Data Items

Producers use the interfaces discussed in this section to send data item change notifications to registered consumers. The information in this section of the document is from Section 6 of the InfoBus specification.

5.5.1 DataItemChangeManager Interface

This interface allows a data item to provide notifications to a consumer when the item has changed. The methods addDataItemChangeListener and removeDataItemChangeListener both need thread safe implementations. The DataItemChangeManagerSupport class is a thread safe implementation of this interface.

5.5.2 DataItemChangeManagerSupport Class

This class is a thread safe implementation of the DataItemChangeManager interface and can be used by any data item producer.

5.5.3 DataItemShapeChangeListener Interface

This interface extends the DataItemChangeListener interface by adding the method dataItemShapeChanged to indicate a change in the shape for a data item. Calls to this Interface can occur asynchronously, so variables that are modified by these methods should be protected..

5.5.4 DataItemChangeListener Interface

InfoBusDataConsumer and InfoBusDataProducer extend this interface. Calls to this Interface can occur asynchronously, so variables that are modified by these methods should be protected. For additional synchronization requirements, see the above discussion of these Interfaces.

5.5.5 DataItemChangeListenerSupport Class

This class contains empty-body implementations of the methods in the DataItemChangeListener and DataItemShapeChangeListener Interfaces. To use this class, override the methods for the events of interest. It’s the implementer’s responsibility to address synchronization. Also see DataItemChangeListener and DataItemShapeChangeListener above.
5.5.6 DataItemChangeEvent Class

The methods in this class (getSource, getChangedItem, and getProperty) return object state information. Since Class methods do not set data item variables multiple threads can call this interface without causing synchronization problems.

5.5.7 DataItemAddedEvent Class

The method in this Class (getChangedCollection) returns object state information. Since this Class method does not set data item variables multiple threads can call this interface without causing synchronization problems.

5.5.8 DataItemDeletedEvent Class

The method in this class (getChangedCollection) returns object state information. Since this Class method does not set data item variables multiple threads can call this interface without causing synchronization problems.

5.5.9 DataItemRevokedEvent Class

There are no methods in this class. See the superclass DataItemChangeEvent for synchronization factors.

5.5.10 DataItemShapeChangeEvent Class

There are no methods in this class. See the superclass DataItemChangeEvent for synchronization factors.

5.5.11 DataItemValueChangeEvent Class

There are no methods in this class. Also see superclass (DataItemChangeEvent) for synchronization factors.

5.5.12 RowCursorMovedEvent Class

There are no methods in this class. Also see superclass (DataItemChangeEvent) for synchronization factors.

5.5.13 InfoBusPropertyMap Interface

The method in this interface (get) returns object state information. Synchronization of the local state variables should be used if objects can have their state updated after it has been published to the InfoBus.

5.6 Data Controllers

The information in this section of the document is from Section 7 of the InfoBus specification.

5.6.1 InfoBusDataController Interface

Implementations of this Interface can be used to optimize the distribution of InfoBusEvents to InfoBusDataProducers and InfoBusDataConsumers. The methods that implement this Interface should be made thread safe.

5.7 Policy

The information in this section of the document is from Section 8 of the InfoBus specification.

5.7.1 InfoBusPolicyHelper Interface

When the object implementing this interface is use by the InfoBus class it is immutable. There are no synchronization issues associated with this interface.

5.7.2 DefaultPolicy Class

This class is immutable at run-time. There are no synchronization requirements associated with the use of this class.

� InfoBus 1.2 Specification Mark Colan, Lotus Development Corp., February 10, 1999.

Page 1 of 14
v1.1 5/12/00

