[image: image1.png]

Defense Information Infrastructure (DII)

Common Operating Environment (COE)

Java Development Guidelines

Version 1.0

May 2000

Prepared by:

Joint Interoperability and Engineering Organization

Defense Information Systems Agency

Prepared by:

Joint Interoperability and Engineering Organization

Defense Information Systems Agency

[image: image2.png]

[image: image3.png]

This page is intentionally left blank.

Defense Information Infrastructure (DII)
Common Operating Environment (COE)

Java Development Guidelines

Version 1.0

May 2000

Submitted by:

KENNETH WHEELER

DII COE Chief Engineer

Approval by:

DAWN HARTLEY

Chief Engineering Executive (Information Processing)

Joint Engineering and Interoperability Organization

Defense Information Systems Agency

This page is intentionally left blank.

Preface
This document provides guidelines for the development of both Java applications that use the COE and COE core components implemented in Java. Readers should view this document as the first iteration of Java guidance. Feedback is solicited and encouraged. Comments and recommendations for change should be sent to:

DISA DII COE Chief Engineer

Attention: David Diskin

Defense Information Systems Agency

JECC

5600 Columbia Pike

Falls Church, VA 22041

(703) 681-2310

 diskind@ncr.disa.mil.

A somewhat experimental process was used for developing this Java guidance document. The document is the result of applying the “open source” software model to document development. All team members contributed individual sections and provided comments on each other’s sections. The author also served as the gatekeeper/coordinator and final editor for the effort.

The author would like to very gratefully acknowledge the participation of the following individuals: Mr. Steve Fritzinger and John DiCarlo, Sun Microsystems; Mr. Darren Govoni, FGM, Inc. and MetaAdapt; Mr. Eric Hughes, Mitre Corporation; Mr. John McKim, Mitre and Global InfoTek Inc. The author would also like to gratefully acknowledge the contributions of Chuck Howell, Jesse Pirocchi, Gary Vecellio, and John Warren, all of Mitre Corp., to the chapter on Performance and Exception Handling.

This page is intentionally left blank.

Table of Contents

3Preface

Table of Contents
5
Table of Figures
7
1
INTRODUCTION
8
1.1
Background
8
1.1.1
DII COE Overview
8
1.1.2
Java and the COE
9
1.2
Objective
10
1.3
Audience
10
1.4
Assumptions
10
1.4.1
System architectures
10
1.4.2
Mobile Code Restrictions
10
1.4.3
The COE Will Provide Java Virtual Machines.
11
2
Architectural Guidance
12
2.1
Standards
12
2.2
Use of Tiers
13
2.3
Multi Tier Architectures
14
2.3.1
Roles in a Multi-Tier Architecture
14
2.4
N-tiered Application Design
15
2.4.1
Data Access and Functional Logic in N-tiered Applications
15
2.4.2
Monolithic and Two-Tiered Applications
15
2.4.3
Three-Tiered and N-Tiered Designs
16
2.4.4
Common Architectural Pitfalls
17
2.5
Mid-Tier Components
18
2.5.1
Database Access in the Mid-tier
19
2.5.2
Distributed Object Computing
19
2.6
Architecturally Simple Systems
22
2.6.1
Architecturally Simple System May Be Multi-Tier.
23
2.6.2
Single-Tier Systems Should Use An Architectural Approach
23
2.6.3
Enable Future Use Of A Smaller System By Building It With An Architectural Approach.
23
3
General Developer Guidance
24
3.1
Package and Class Naming Conventions
24
3.1.1
Package Naming
24
3.1.2
Class and Interface Naming
24
3.2
JNI
24
3.3
JavaBeans
24
3.3.1
The Bean Methodology
24
3.3.2
Guidance for Creating and Using JavaBeans
25
3.3.3
Guidance for Partitioning a Development Effort Into Beans
29
3.3.4
Bean Quality
29
3.3.5
Advanced JavaBean Integration
30
3.4
(Non GUI) Unit Testing
30
3.4.1
Scope.
30
3.4.2
The Problem
30
3.4.3
Example Unit Testing Tools
30
3.4.4
Testing Practices
31
3.4.5
Summary
31
3.4.6
COE Guidance
31
3.5
Coding Style Guides
31
3.6
Documentation
32
3.6.1
Javadoc
32
3.6.2
Other Design Documentation
37
3.7
JRE, Versions
38
3.7.1
Other JREs
38
4
Guidance for Client Side Development
40
4.1
Graphical User Interface (GUI)
40
4.1.1
Avoid Win 32 Native AFC
41
4.1.2
Look & Feel
41
5
Guidance for Server Side Development
42
5.1
Java 2 Enterprise Edition
42
5.1.1
J2EE Architecture
42
5.1.2
J2EE Application Model
43
5.1.3
Application Servers
49
5.1.4
J2EE Attributes and Environment settings
50
5.1.5
J2EE Server Compatibility
50
5.1.6
Server Side Framework and a multi-tier architecture
50
5.2
Legacy Application Integration
51
5.2.1
Integration Technologies
51
5.2.2
Integration Approaches
51
5.3
Security of Mobile Server-Side Code
52
6
Performance and Exception Handling
54
6.1.1
Writing High Performance Code
55
6.1.2
Multi-threading
56
6.1.3
Introspection
58
6.1.4
Dynamic Class Loading
58
6.1.5
Smart use of memory
58
6.1.6
Event handling
60
6.1.7
Java Static Compilers
60
6.1.8
String Management
62
6.1.9
Java Runtime Class Libraries
62
6.1.10
Java Language Facilities
63
6.1.11
Miscellaneous
63
6.2
Exception handling in Java
65
6.2.1
Background
65
6.2.2
Brief Overview
66
7
COE Specific Development/Run-time Guidance
71
8
Summary of Guidelines
72
8.1
Architecture
72
8.2
General
73
8.3
Client Side Development
76
8.4
Server Side Development
76
8.5
Performance and Exception Handling
78
9
References
80
10
Glossary
85

Table of Figures

15Figure 1. Generic 3-tier architecture

Figure 2. 6-tier Design
17
Figure 3. Sample Logical Tier-Based System
19
Figure 4. Distributed Object Computing
20
Figure 5. n tier architecture example
50

1 INTRODUCTION

1.1 Background

1.1.1 DII COE Overview

The following are excerpts from the Defense Information Infrastructure (DII) Common Operating Environment (COE) Integration and Runtime Specification (I&RTS) [I&RTS 1999], which is the central document that describes the technical requirements for using the DII COE (some emphasis added):

· “The DII COE concept is best described as an architecture that is fully compliant with the DOD Technical Architecture for Information Management (TAFIM), Volume 3, [TAFIM 1996], an approach for building interoperable systems, a reference implementation containing a collection of reusable software components, a software infrastructure for supporting mission-area applications, and a set of guidelines, standards, and specifications.”

· “A significant aspect of the COE challenge is to strategically position the architecture so as to be able to take advantage of technological advances. At the same time, the system must not sacrifice quality, stability, or functionality already in the hands of the warrior. In keeping with current DOD trends, the COE emphasizes use of commercial products and standards where applicable to leverage investments made by commercial industry.”

· “The broad program drivers for the DII COE lead to a number of program objectives that include those stated in the TAFIM, Volume 2 [TAFIM 1996]:

· Commonality: Develop a common core of software that will form the foundation for Joint systems, initially for C4I and logistics systems.

· Reusability: Develop a common core of software that is highly reusable to leverage the investment already made in software development across the services and agencies.

· Standardization: Reduce program development costs through adherence to industry standards. This includes use of commercially available software components whenever possible.

. . .

· Interoperability: Increase interoperability through common software and consistent system operation.

· Scalability: Through use of the segment concept and the COE architectural infrastructure, improve system scalability.

· Portability: Increase portability through use of open systems concepts and standards. This also promotes vendor independence for both hardware and software.

. . .

· Testing: Reduce testing costs because common software can be tested and validated once and then applied to many applications.

1.1.2 Java and the COE

Java has evolved into a robust client and server side-computing platform. The Java language and infrastructure (class libraries and specifications) directly support and facilitate the DII COE objectives described in section 1.1.1, including:

· Reuse - via its pure Object-Oriented language features and its client and server side component models (Beans and Enterprise Beans).

· Quality, stability, and reduced testing costs through its inherent support for reuse, and due to its language design. Java has eliminated some common programming errors associated with features like memory management and pointers in C, C++, and includes important features like strong data typing, built-in exception handling, and interfaces.

· Use of commercial products and standards.

· Portability through its “write once, run anywhere” (WORA) strategy, thus promising development and maintenance of a single source code baseline across the COE’s various hardware and operating system (OS) platforms.

Software developers worldwide are increasingly shifting to the use of Java for application development for these and other reasons, including its broad industry support, close and complementary alignment with the WWW, Extensible Markup Language (XML) and distributed computing, and increased productivity over C and C++. Similarly, the DII COE is providing increasing support for Java development, and to the extent possible and reasonable, is also being rewritten in Java.

For the foreseeable future, legacy code written in other languages, such as C++, may need to be utilized and integrated with Java applications. Also, Java’s benefits have been attained at the price of slower performance. Although Java’s performance has improved significantly with Just In Time (JIT) compilers, as well as Sun’s HotSpot technology at the current time it still lags behind
 natively-compiled languages. Therefore, it is understood that currently not all applications can be written in Java. Interoperability between Java-based code and applications written in other languages can be accomplished via Common Object Request Broker Architecture (CORBA), RMI/IIOP, and in special cases, using the Java Native Interface (JNI), which are presented in subsequent sections.

1.2 Objective

This document provides guidelines for the development of both Java applications that use the COE and COE core components implemented in Java. Readers should view this document as the first iteration of Java guidance. Feedback is solicited and encouraged. Feedback should be sent to: David Diskin, diskind@ncr.disa.mil.

· These guidelines are intended for developers who have already decided to use Java.

· Java and its associated technologies continue to evolve at a fast pace. This document does not address some of the newer, emerging Java technologies such as Jini, and real time Java. Future versions will attempt to incorporate such technologies as they mature.

1.3 Audience

There are two intended audience groups for this document. The first group represents teams developing COE “core components” to be used by mission application (MA) developers (e.g., Integrated C4I Systems Framework (ICSF) “components” like mapping, track management, alerts, etc. or the COE kernel “components”). The second group represents MA developer teams using the COE (e.g., Theater Battle Management Core System (TBMCS), Global Command and Control System (GCCS), etc.).

1.4 Assumptions

1.4.1 System architectures

These should be consistent with DII COE policy (components and standards). Systems should avoid proprietary Application Programming Interfaces (APIs) as much as possible. Where proprietary APIs are necessary, they should be suitably abstracted behind a non proprietary interface to allow for implementation changes without affecting other parts of the system.

1.4.2 Mobile Code Restrictions

Java supports applets, or small application components that are downloaded to clients and usually execute in a browser. The DoD policy on use of mobile code, including Java applets, is defined in Department of Defense (DoD) Mobile Code Technology Policy and Guidance [DoD1 2000]. More detailed implementation guidance is provided in the DoD document Configuration Guidance for Client Workstations, Applications, and Firewalls To Implement the DoD Memorandum on Use of Mobile Code, [DoD2 2000]. As of this writing, both documents are still in draft form. The policy categorizes Java applets as a category 2 risk. Category 2 mobile code technologies may be used if they are obtained from a trusted source over an assured channel. The decision of whether to allow the use of Category 2 mobile code (e.g. Java applets) from untrusted sources and/or not over an assured channel is delegated to the local C/S/A CIO. Note that the DoD Mobile Code Policy restrictions do not apply to use of mobile code within the confines of an enclave or preinstalled on a user workstation. Developers are directed to contact their appropriate program office for further information or updates to this policy and implementation guidance. This document addresses both Java client applications (i.e., Java application programs executing outside a Web browser), for which there is no prohibition, and Java applets for which there is a more restrictive policy. Most of the guidelines in this document apply to both applets and applications.

As of this writing, the DoD policy memorandum [DoD 1 2000] also includes other Java mobile code technologies like RMI and Jini. They are also considered a category 2 risk with the same restrictions as Java applets.

1.4.3 The COE Will Provide Java Virtual Machines.

The use of a Java Virtual Machine (JVM) is made possible by the installation of the Java Runtime Environment (JRE), which contains the JVM and class files needed to run Java applications and applets (does not contain javac, used to compile Java source code). As specified later in this document, the DII COE will provide JREs for its supported platforms (as segments provided separately from the kernel). For trusted applets, COE browser-based applications and components should use the Sun Microsystems Java Plugin Hyper Text Markup Language (HTML) mechanism in order to always execute a COE JRE. The COE Netscape browser should be configured to use the Java Plugin, which can automatically execute a standard COE JRE within the Netscape browser. This will allow COE personnel to quickly upgrade COE systems to use new versions of the JRE.

2 Architectural Guidance

The Java language provides its own framework, capabilities, and limitations, which impact the way developers and architects conceive, build, and field their systems. For instance, having users interact with applets running in a browser can significantly simplify the way systems are built and deployed. Also, using Java mitigates the problem of porting applications to different machines and operating systems. This section is intended to provide architectural guidance that is relevant to the Java language and infrastructure.
Initially, Java was thought to be a client side language for building and deploying Graphical User Interfaces (GUIs), but not a server side language. That concept has changed dramatically with the Java Development Kit (JDK) 1.2, the Java 2 Enterprise Edition (J2EE) with servlets, Java Server Pages, Enterprise JavaBeans, JavaIDL, other Java Enterprise APIs, and the realization by many that Java is a robust and flexible language for the server. But to take full advantage of the Java language, developers should follow sound architectural principles such as the decomposition of software into multiple tiers so that systems can be reused and easily deployed. This section attempts to provide these architectural principles. It also provides an architectural context for the balance of the document, which describes general, client side and server side considerations.

2.1 Standards

Additionally, in order to provide consistency and interoperability, and to promote reuse in COE systems written in Java, the use of standards is required.

COE developers should use the defacto standard Java APIs, maintained by Sun Microsystems and developed by Sun, Oracle, IBM, and other organizations and via the Java Community Process, for the purpose of developing reusable, interoperable, and cost effective Java solutions for the DOD. The key APIs will be discussed throughout the remainder of this document. The following API’s apply:

J2EE Enterprise APIs:

· EJB (Enterprise JavaBeans) provides a server side component model for component integration and deployment

· JNDI (Java Naming and Directory Interface) provides a unified interface to multiple naming and directory services – e.g. .for common access to Corba Naming, LDAP, and DSN data

· JDBC((Java DataBase Connectivity) is a standard SQL based database access interface. It provides Java with a uniform interface to a wide range of relational databases

· Servlet and JSP (Java Server Pages) are Web server component standards to support dynamic HTML generation and session management.

· JMS (Java Message Service) provides enterprise-messaging services that include reliable queuing, and flexible asynchronous exchange of data and events.

· JTS (Java Transaction Service) provides Java interoperability among transaction-based applications such as resource managers, transaction processing monitors, transaction-aware communication managers, and transaction managers. Java Transaction Services specifies a transaction Manager implementation that supports the OMG Object Transaction Service (OTS) 1.1 specification.

· JavaMail(provides a platform independent and protocol independent framework to build Java technology-based mail and messaging applications.

· RMI/IIOP(Remote Method Invocation/Interorb InterOperability Protocol) provides a remote method call mechanism used for distributed applications.

· JAF (JavaBeans Activation Framework) are standard services to determine the type of an arbitrary piece of data, encapsulate access to it, discover the operations available on it, and to instantiate the appropriate bean to perform said operation(s).

Non J2EE APIs:

· JNI (Java Native Interface) for Java to/from C/C++ code within the same JVM

· JavaBeans Specification for Java component technology

· Runtime Containment and Service Protocol

· JFC (Java Foundation Classes) for GUI development

2.2 Use of Tiers

The use of tiers in systems building facilitates componentized software. Specialized software "components" can reside in different logical tiers and be separated by reliable interfaces. Components adhering to the appropriate interface can easily be swapped into a given tier. For distributed systems, the use of tiers is important to the overall operation and flexibility of the system as it allows components dispersed physically across a network to maintain their own operational parameters and to be handled, managed, and maintained as functioning "pieces" of a whole. Managing a system by manipulating its granular components will be far more achievable than with large, rigid, monolithic or non-component based architectures.

Other reasons to tier a system include:

· Ease of integration

· Code reuse

· Ability to use Commercial Off-the-Shelf (COTS) frameworks

· Scalability

· Manageability

2.3 Multi Tier Architectures

This section will provide guidance on how to:

· Partition an application into reusable components

· Avoid common mistakes which inhibit reusability

· Select the proper framework for your application

· Build manageable server components

These guidelines depend on standard Java APIs and environments. In all cases, these standards are available from multiple vendors and run on many different operating environments. Generally, these standards are available both as supported, commercial implementations and as free, reference or open source implementations.

2.3.1 Roles in a Multi-Tier Architecture

Each “tier” may be represented as a single physical system or computer. However, the tier concept is a logical one and many such role-based tiers may be running on a single server or workstation. This distinction between a tier as a logical and architectural construct vs. a tier as an individual layer of hardware is often overlooked. Do not assume that just because an architecture calls out several tiers of processing components that there will be an equal number of physical layers. The point of N-tiered applications design is to increase code and infrastructure reusability, not to mandate a certain deployment strategy. For reasons of scalability, manageability, throughput, simplicity, and network connectivity and capacity, it is often better to consolidate two or more tiers onto a single physical machine. A tier will typically be defined by its discrete role in relation to other tiers comprising the distributed system. Some such roles include the following:

· User presentation

· Data/document rendering

· Business/functional logic

· Data Mediation

· Support Services (e.g. transactions, load balancing etc.)

· Data Storage

Tiers can serve any role required by the system being developed. Those above highlight some more common discrete tasks that tiers can play. Figure 1 shows one example - a generic 3-tier architecture.

[image: image4.wmf]User Presentation

(Client)

Mid-tier

Data

RDBMS

Flat File

Legacy

System

Application Server

HTTP Server

Standalone

Application

HTML

Browser

Browser

Applet

Figure 1. Generic 3-tier architecture

2.4 N-tiered Application Design

2.4.1 Data Access and Functional Logic in N-tiered Applications
For every application, the developer has the option of a monolithic (single logical tier) stand-alone design or a multi-tier design based on a traditional two-tiered client-server, three-tiered (distributed) computing, or a generalized N-tiered design. In general, higher order designs handle large client loads better, offer more flexible deployment options, are more easily reused in different applications, and support different types of clients. Higher order designs also require a significantly greater effort at the beginning of the development cycle for partitioning the functionality properly, designing the interfaces between layers, and accounting for the increased complexity of security and management problems in a distributed application. These trade-offs between design efforts early in the project and benefits later in the projects life are discussed here in Section 2. The following are a set of guidelines for appropriately balancing these trade-offs.

2.4.2 Monolithic and Two-Tiered Applications

Although there are some exceptions (see section 2.6 for discussion of these situations), in general application designers should avoid monolithic (single tier) designs. Monolithic designs offer little opportunity for code reuse and typically are very difficult to integrate with other systems.

The two-tiered client-server design was originally touted as a solution to the reuse and integration problems found in the monolithic design. Experience, however, has shown that two-tiered designs offer only limited advantage over monolithic designs. Unless the developer is extraordinarily careful when partitioning the application, the tendency to mix functional logic into both sides of a client-server application and to hardwire GUI controls directly to data elements on the server side results in application components that are no more reusable than their monolithic counterparts. For these reasons, two-tiered designs are usually not appropriate for COE applications and developers should avoid this design when possible.
2.4.3 Three-Tiered and N-Tiered Designs

For maximum flexibility, data, functional logic that operates on that data, and GUIs which allow users access to that logic should be kept strictly separate. The 3-tiered design, and the more general N-tiered design, support such separation by providing well-defined infrastructures in which to deploy each type of code. The three tiered design partitions applications into GUI, functional logic, and raw data. The general N-tiered design expands on this partitioning to provide interface layers between the three main partitions. These interface layers make it easier to reuse application components and enable standardized infrastructural elements that support the three main application tiers. N-tiered designs are recommended for COE applications.
The following six-tiered design example is illustrative of an N-tiered application. It represents a a further factoring of the standard 3 tier model
. The application comprises six distinct layers, some of which are custom components designed for this application and some of which are COTS products. The 6 tiers are:

· User Interface Engine - Draws the user interface (typical examples include a Web browser or the GUI on a desktop application).

· User Interface Logic - Controls what is drawn by the User Interface Engine. While the User Interface Engine and the User Interface Logic are frequently implemented in the same process (i.e., a desktop application), “generic” user interfaces, like Web browsers and XML clients, allow these two functions to be distributed across multiple processes or machines. Technologies like Java Server Pages apply here.

· Functional (Business) Logic - These are the business and algorithmic rules which implement the application. (“Server side”) component models like EJB apply here.

· Logic Container - This tier, which is typically a COTS product, provides a run-time environment for the application’s functional logic. This run-time environment provides support services like security, logging, administration, threading and scalability. Section 5.2 describes several options for logic containers and guidelines for choosing between these options. Application servers fall into this category.

· Data Interface - A standard API for accessing the applications data. Data mediation technologies apply here.

· Data Repository - A component which manages raw data. This could be a flat file, RDBMS, legacy application or other option

[image: image5.wmf]Data Repository

Data Interface

Logic Container

Functional (Business) Logic

User Interface Logic

User Interface Engine

User

Interface

Logic

Data

Figure 2. 6-tier Design

By partitioning the application in this manner the developer is able to take advantage of multiple COTS products (e.g. J2EE/EJB servers and RDBMS’s), reduce the amount of custom code needed to implement the application, and build application components that are more easily reused across a wide range of applications.

2.4.4 Common Architectural Pitfalls

Simply partitioning an application into three or more tiers does not ensure that the resulting components will be easily reused or be of value to applications other than the one for which they were designed. There are several common pitfalls which developers should avoid. These pitfalls are especially dangerous for developers accustomed to monolithic or two-tiered designs and for those under pressure to deploy something rapidly. Extreme “time to market” pressures often work against the upfront design efforts needed to create a solid N-tiered design. The following are several of the most common pitfalls and guidelines for avoiding them.

2.4.4.1 Add Value at Each Level of the Architecture

Components that simply pull data from a lower tier and pass it, unchanged, to a higher tier add little to the architecture. If the user of the component must learn an API of complexity equal to the complexity of the lower level API, then chances are this layer should be removed from the architecture. Since each tier adds latency, complexity, and management concerns to the application, tiers that do not add value to the flow of data should be removed or redesigned.
2.4.4.2 Avoid Indirect Coupling of User Interface and Functional Logic

It is often tempting to collapse an N-tiered architecture into fewer tiers and to perform the functions of two or more tiers in the new composite tier. Despite having three physical tiers, these applications more closely resemble two-tiered client-server applications than modern N-tiered designs. Web applications frequently suffer from this kind of architectural collapse. Common Gateway Interface (CGI) scripts running on the physical mid-tier implement both the functional logic of the application and the user interface logic. By tying the user interface logic (in the form of an HTML generator) directly to the functional logic, the architecture makes it difficult for a client other than a Web browser to take advantage of the logic.

To avoid this pitfall, no module or component should ever implement both the functional and the user interface logic for the application. These functions should be kept strictly separate. The user interface logic should access the functional logic only through well-defined interfaces.

2.4.4.3 Avoid Premature Reduction of Data

The premature reduction of data from a raw form into something less generic is often a mistake. This mistake is closely related to the coupling of user interface and functional logic, as seen in the Web application example in 2.4.4.2. By converting raw data into HTML, this design requires that any client wishing to take advantage of the functional logic must implement an HTML parser.

In most cases, data should flow through the system in as generic a form as possible and only be converted to a displayable format by the user interface logic. This allows any component to take advantage of functionality implemented in a layer below it without having to understand a specific display format.

There is some tension between designs that respect this rule and designs that attempt to add value to a data stream. Balancing this tension requires careful examination of the functionality in each layer and of the type of data that makes the most sense to pass to the tier above. Data formats like Java objects, which encapsulate raw data or JDBC ResultSets, allow a tier both to add value to the datastream and to preserve the data in a useful format. For example, the Java Language’s exception class, which is a true Java object that can be sub-classed to add any needed behavior, allows the client easy access to the details of the exception while also allowing more complicated behavior to be implemented. Other formats, like HTML and ASCII streams, require that the client tier know much more about the data and perform much more work to use the data.

2.5 Mid-Tier Components

Mid-tier components represent a class of software that resides somewhere between the client user interface (e.g. web browser, stand-alone desktop application) and various back-end sources of information (e.g., databases, the Web, files). Java mid-tier supporting services can fall into a number of categories, from remote object servers and JDBC servers, to complete application servers with transaction processing capability and process synchronization. In any scalable distributed system, there will be an emphasis on the mid-tier as it is there that vital business logic ,data access components, and supporting services including security and user authentication, will reside. The following diagram shows a sample logical tier-based system

[image: image6.wmf]User

User

User

Business

Object

Tier

Logic

Container

(Transaction

Mgr) Tier

Data

Interface

Tier

Data

Repository

Tier

network

Figure 3. Sample Logical Tier-Based System

2.5.1 Database Access in the Mid-tier

Most often today, client applications do not talk directly to back-end databases, but rather communicate through a middle-tier running specialized middleware software that controls the location and connection details to various databases driving an application. This allows those details to change independently of the application or applications using the middleware to access information .

2.5.1.1 JDBC (Java DataBase Connectivity) Access

JDBC [JDBC 1998] or Java DataBase Connectivity is a SQL based class library for accessing relational data. JDBC middleware components typically will run on a machine other than the one hosting the User Interface (UI) tier. User applications will subsequently request data from a remote data source using a JDBC Uniform Resource Locator (URL) to identify the specific database information needed to form a connection. The JDBC middleware will act on behalf of the application and establish a connection to the data source passing queries and result sets back and forth between the application and the database relatively transparent to the application. That is, the application continues to use the standard JDBC interface.

2.5.1.2 OODBMS (OQL) TBD in Next Version

2.5.1.3 Object/Relational TBD in Next Version

2.5.2 Distributed Object Computing

Distributed Object Computing permits access to objects and object services across a network. Within this paradigm, Java class objects can reside on a remote system and be accessed across a network as if the object resided locally. Specifically, a distributed object’s methods can be accessed publicly across a network. This paradigm can accelerate the development of distributed multi-tier systems by allowing for native language object development to occur without overriding concern about the network mechanics involved in distributing such objects.

In most distributed object technologies, including those provided by Java, a simple process is required in order to permit Java objects to be remote enabled. (However certain commercial technologies have managed to bypass these procedures.) For example, both Java RMI and CORBA require that special interfaces be generated for each remote object. These interfaces handle the network connections and parameter marshaling required for distributed access. Two such interfaces are the stub and skeleton where the stub resides on the client side and the skeleton resides on the server side. Each interface transparently deals with the details addressed in making remote method invocations on a network object. The client implementation class of the stub interface is typically referred to as the object “proxy” since it appears identical to the real object only it resides locally. The following diagram shows what is involved in a simple distributed object system.

[image: image7.wmf]skeleton

proxy/

stub

message

traffic

Java VM

Java VM

Java

Object

Figure 4. Distributed Object Computing

The Java platform offers a number of various techniques for distributing objects; some are part of the core platform and others are third party products. Each has pros and cons worthy of discussion.

2.5.2.1 RMI

RMI [RMI 1999] is Java’s mechanism for accessing remote objects, and is part of the core platform. Java classes are remotely enabled by extending the RMI class java.rmi.RemoteObject. Once this is done, support classes representing the stub and skeleton are generated by running the rmic command bundled with Java. RMI objects are registered in the RMI registry, and the RMI registry program { rmiregistry } must be running in order to perform RMI lookups on remote objects contained therein.

Java 2 provides the RemoteServer class, which is a subclass of RemoteObject and is the parent class of UnicastRemoteObject. RMI objects should extend UnicastRemoteObject
, which provides the proper semantic implementations of hashCode, equals and toString methods with respect to all RMI objects. This may not be possible in the case where the class is already subclassing a superclass. In those cases, pass a reference of the remote object to the exportObject() method of the UnicastRemoteObject class
Client applications perform namespace lookups on a particular RMI server where the host of the RMI server and the desired object’s reference name are known in advance. The server object’s remote interface is acquired in the RMI lookup. The implementation is a proxy that will forward method invocations to the remote object for execution. This technique is currently unicast; that is, the method invocation occurs only in the direction of the remote object registered in the remote RMI. Additionally, all remote objects are currently unicast-type remote objects meaning that operations and messages are sent from point-to-point and are not multicast. Typically, Java client applications will not require that an RMI registry server is running on the client machine and this is usually the case. For this reason, RMI is typically used in a traditional client-server type of architecture where remote requests are sent from a client to a server and not vice-versa. However, a remote reference to an object running in a remote registry can be freely passed to other remote objects for access on other servers or clients depending on security restrictions. In addition, the server can return results to the client.

2.5.2.1.1 RMI Namespace Lookups & JNDI

Client applications should use Sun’s JNDI RMI service provider implementation [JNDI 1999] for performing RMI lookups on remote objects. In doing this, subsequent implementations can be plugged into the client such as CORBA’s COS Naming service, Voyager, and other directory and object registry protocols.

2.5.2.2 CORBA

For an in depth discussions of CORBA, refer to [Orfali 1998], “Recommendations for using Distributed Computing Environment (DCE), Distributed Component Object Model (DCOM), and CORBA Middleware” [DII COE 1998], and for detailed further information on CORBA, refer to the Object Management Group (OMG) web site at http://www.omg.org.
2.5.2.3 RMI vs. CORBA

The CORBA facilities provided through Java allow for CORBA objects and services to be accessed from Java. CORBA offers a somewhat more involved process of creating and accessing objects and services than RMI. CORBA’s primary strength lies in its ability to define objects and interfaces that are implemented across heterogeneous hardware systems and possibly in different programming languages. As a design consideration in the early stages of an all-Java system, RMI may be the method of choice for its ease-of-use and standard within Java. However, when possible, final designs should incorporate approved COE CORBA 2.3 (or higher) Internet Inter-ORB Protocol (IIOP) compliant products. This strategy ensures easier future integration with non Java applications. RMI should be used in cases where RMI provides features lacking in CORBA but required by the application. For example, if the application needs real “objects over the net”, and only one object type system, RMI might be useful. It allows real polymorphism, and allows parameter passing between local and remote systems as true Java objects, not just data. Further, it allows dynamic class loading for parameters and return values, as well as distributed garbage collection. In situations where these capabilities are required, applications should utilize RMI/IIOP communications.

2.5.2.4 Enterprise JavaBeans (EJB)

Enterprise JavaBeans [EJB 1998] is a specification for a server-side component model for distributed network applications written in Java. The specification defines a number of enterprise object types such as Entity Beans and Session Beans. The motivation behind EJB is to provide business object level services transparently to the business object developer. For example, EJB provides the following major object services to developers:

· Transactions

· Concurrency control

· Object persistence

· On demand availability

Solving major problem categories like those above can consume a large amount of developer resources in terms of time and money. Most application developers are not experts in the major categories presented and for this reason, EJB implementations from vendors will provide these services transparently to EJB developers. This allows EJB developers to focus more on the application objective and less on the enterprise critical functionality, common to most enterprise applications as these concerns are implemented by the EJB container vendor (e.g., Oracle, BEA WebLogic, IBM, etc.)

EJB provides a set of interfaces and guidelines for creating Enterprise JavaBeans. Once created, such EJBs are deployed into an EJB runtime environment that includes a server, and an EJB container which provides these services to EJBs.

Section 5.1.2 covers EJB architecture, development and recommended usage in greater detail.

2.6 Architecturally Simple Systems

Some software systems are architecturally simple enough that an architectural approach would seem to be overkill. For example, consider a single-user system that stores all its data in a local file and runs only at the direct request of the user. As another example, consider a batch process that performs automatic forwarding of messages received by a given machine. Such systems may serve a vital user need and may be essential to a mission.

Architectural considerations are as important for such simple systems as they are for very complex systems. There are many examples of simple systems that became (over time) vital components of more complex systems, or were enhanced to the point of becoming complex themselves. Such integration or enhancement is often very difficult, partly because no architectural approach is taken when the architecturally simpler system is originally conceived. The purpose of this section is to prevent this problem by offering guidance appropriate to the earliest stages of an architecturally simple system’s lifetime.

2.6.1 Architecturally Simple System May Be Multi-Tier.

A tier is a logical grouping of functionality, which may or may not correspond to a piece of hardware. In addition, the number of lines of code in a system does not dictate the appropriate number of tiers. A system with millions of lines of GUI code may be an appropriate single-tier system, while a system with a small GUI and a small database access routine may be two- or even three-tier.

2.6.2 Single-Tier Systems Should Use An Architectural Approach

Section 2.3 gives guidance for conceiving and designing multi-tier systems. For a single-tier system, this guidance should be applied to the appropriate tier. The system may be considered as a single component, or may be composed of a set of components allocated to a single tier.

2.6.3 Enable Future Use Of A Smaller System By Building It With An Architectural Approach.

Although developers should avoid over-designing a system to be larger than necessary, a flexible design is encouraged where cost-effective. For example, a system saving its results in a local file might be reasonably designed to use a separate routine or component for file I/O, which makes it much easier to port the system to a platform with different I/O capabilities, or to expand the system to use a database. However, this can easily be taken to extreme. The designer should consider partitions of a system (suggested in Section 2.2 and Section 3.3.3), and apply a partition if it helps the system meet its requirement and/or goals. Such partition decisions (whether applied or not) should be documented to enable reuse.
3 General Developer Guidance

3.1 Package and Class Naming Conventions

Java allows classes and other definitions to be grouped into packages, which provide a logical grouping for these definitions and allow selective use (much like Ada). This section provides guidance for package naming as well as naming classes and interfaces.

3.1.1 Package Naming

Refer to section 8.2.2 of the I&RTS [I&RTS 1999] for guidance.

3.1.2 Class and Interface Naming

Class and interface names should be prefixed with the mixed case segment abbreviation, for example, “JmvCircleMode”. In general, interface names should not explicitly indicate an interface, as this violates the accepted Java design practice of being able to treat interfaces as “true” objects. Refer to the interfaces in the JDK documentation (e.g. java.awt.event package) for examples of accepted practice and meaningful names.

3.2 JNI

Java applications requiring access to code written in other languages such as C and C++, can use the JNI to write Java native methods to provide this capability. The DII COE strongly discourages the use of JNI since it usually breaks the portability provided by Java. But practically, there are times when it is appropriate to use. Developers using JNI should be capable of justifying its use to the DII COE chief engineer. The following may be acceptable reasons to use JNI within the DII:

· Performance critical code needs to be executed in another language.

· The Java libraries do not provide the functionality needed for an application.

· Libraries have already been written in another language and need to be used in your application.

· You have a requirement to use a legacy application/module, written in another language, like C or C++.

When using JNI, the JNI code should be hidden behind a pure Java interface, so the JNI implementation can be torn out later and replaced with pure Java without breaking clients.
3.3 JavaBeans

3.3.1 The Bean Methodology

The JavaBean component model defines a common way to create reusable interoperable objects. The motivation behind the methods and practice of JavaBean development is to permit interaction between otherwise disparate objects possibly developed by other individuals or vendors. Through the JavaBean standard, JavaBeans of all kinds can be linked together in various contexts, increasing their reusability. In addition, JavaBean objects can be used by visual Java builder tools, where they can be visually configured and connected together. Together, these capabilities will provide for faster application development and easier future modification through incorporation of newer, better, or other bean components.

Connecting JavaBeans together is a topic of much discussion and research. Bean builder and composition tools automatically build and compile adaptor classes, which connect events in one bean with methods in another. Advanced mechanisms for JavaBean connectivity are starting to be used. The use of advanced JavaBean connection mechanisms, such as the Extensible Runtime Containment and Server Protocol will also be discussed. These allow applications to more easily and flexibly compose and use JavaBeans.

3.3.2 Guidance for Creating and Using JavaBeans

This section will include some helpful guidelines to assist in the understanding and development of JavaBeans and JavaBean-based applications. The following subsections outline the major aspects of the JavaBean spec and offer some examples and guidelines for understanding them.

3.3.2.1 Requirements

· A JavaBean must have a public zero-argument constructor.

· A JavaBean must support persistence, by implementing either Serializable or Externalizable.

3.3.2.2 Properties

JavaBean properties represent the publicly known attribute types for a given JavaBean. Properties can be easily manipulated by JavaBean builder tools [JavaBeans 1997, Section 7]. Each JavaBean should define and expose a set of publicly known and documented properties.

· All JavaBean properties should be labeled private to prevent direct public access.

· All JavaBean properties should be accessed by appropriate accessor methods in the form of standard notation “getter/setter” methods. For example, a property called name would be accessed through” setName(String name)” and “getName()”.

· JavaBean properties should be documented using JavaDoc notation within the source code.

3.3.2.3 Accessor Methods

The use of standard getter/setter notion is defined within the JavaBean spec [JavaBeans 1997, Section 8.3, Design Patterns for Properties] and provides a format for identifying accessor methods for a given property through bean introspection. In addition, it facilitates a common coding standard that is both readable and easy to use. Getter and setter methods have the added benefit of concealing the implementation of properties, allowing that implementation to change without affecting the access protocol to it.

· Getter methods must be prefixed with “get” followed by the property name; first letter capitalized. [JavaBean specification Section 8.3, Design Patterns for Properties]

· Setter methods must be prefixed with “set” followed by the property name; first letter capitalized. [JavaBean specification Section 8.3, Design Patterns for Properties]

3.3.2.4 JavaBean Naming Conventions and Design Patterns

The JavaBean specification provides standard naming syntax and conventions for the following entities:

· Property accessor methods [see 3.3.2.2 above]

· Event listener interfaces

· Event classes

· Event listener methods

[JavaBean specification Section 8.4, Design Patterns for Events]

3.3.2.5 Creating Event Listener Interfaces

JavaBeans communicate with one another through event interfaces. Specifically, a given JavaBean that generates a given class of custom event will provide notification of the event generation through an accompanying interface known as an event listener interface. JavaBeans wishing to receive notification of an event must be registered with the JavaBean generating the event.

Registration of a particular event type is done by adding an object capable of listening for that type of event (and hence referred to as the event listener) to the object where the event will be generated. This is done through the appropriate event listener method on the target object. For example, if an object generates an event type ObjectFoundEvent, then the associated event listener interface, ObjectFoundListener would be registered on the object generating the ObjectFoundEvent through the following listener method:

GeneratingObject.addObjectFoundListener(ObjectFoundListener ofl)

Likewise, removing a listener is done through:

generatingObject.removeObjectFoundListener(ObjectFoundListener ofl)

· Event listener interface methods are prefixed by “add” or “remove” followed by the event listener interface name
· Event listener interfaces extend java.util.EventListener and end with the prefix “Listener”. For example, WindowListener, KeyListener, ComponentListener, etc.

3.3.2.6 Creating Custom Events

JavaBeans communicate through JavaBean events. Events are sent to event listeners registered on a particular bean. When creating custom JavaBean components, defining a set of events generated by the JavaBean is common practice. The JavaBean introspection mechanism can identify the custom events provided by your bean providing the following are true:

· Your bean implements the appropriate event listener method patterns [see Sections 3.3.2.4, 3.3.2.5].

· The event listener receiving a custom event class must be a subclass of java.util.EventListener.

· The event class must be a subclass of java.util.EventObject.

Depending on the interface method used for your event notification, your event class name may be named appropriately. Consider the following classes.

// The event generating class

public class DataFeed {

Vector listeners = new Vector();

…

public void addDataFeedListener(DataFeedListener dfl) {

listeners.addElement(dfl);

}

public void removeDataFeedListener(DataFeedListener dfl) {

listeners.removeElement(dfl);

}

// Not a required method, but provided for illustration purposes

public void notifyListeners(DataChangedEvent dce) {

// Clone in case listeners is modified from another thread

Vector listeners = this.listeners.clone();

for(int x=0;x<listeners.size();x++) {

((DataFeedListeners)listeners.elementAt(x)).dataChanged(dce);

}

}

}

public interface DataFeedListener extends java.util.EventListener {

public void dataChanged(DataChangedEvent dce);

}

public class DataChangedEvent extends java.util.EventObject {

private Object data;

public DataChangedEvent(Object source, Object data) {

super(source);

this.data = data;

}

public void setData(Object data) {

this.data = data;

}

public Object getData() {

return data;

}

}

DataFeedListener objects will be notified about events from DataFeed objects when their dataChanged() method is invoked. Keeping with form, the event object received will be appropriately of type DataChangedEvent. Although this is encouraged for readability and consistent design, it is not a requirement of the JavaBean spec. Also, event listener interfaces may have multiple interface methods which can accept the same or different event objects depending on your approach. Custom event objects should end with the suffix “Event” – e.g., ActionEvent, MouseEvent, DataChangedEvent, etc.
3.3.2.7 Bean Customizers

JavaBeans have the option of providing a customizer for managing the collective properties of that bean. Each bean customizer provides a user interface that allows the user to read and set the various properties of the bean at design or runtime . Customizers can be a simple panel with related properties grouped together or a sophisticated wizard that allows the user to navigate through a hierarchy of screens. Bean customizers are accessed and displayed to the user at design time (via a builder tool) or runtime and do not need to be known or hard coded in advance; that is, JavaBeans can be loaded dynamically and their customizers can subsequently be displayed to allow for runtime interaction with the JavaBean [JavaBeans 1997].

Customizers provide a convenient (although optional) mechanism for interacting with a bean’s properties . In theory, every JavaBean can provide its own unique customizer and display the property editors in a manner intended by the bean designer. This is in contrast to the property sheet approach where a particular bean box or visual builder will construct its own property sheet for the bean using introspection. No blanket recommendation is offered for use of customizers, as their usefulness depends on the bean.
3.3.3 Guidance for Partitioning a Development Effort Into Beans
Given the knowledge of how to implement functionality as beans, the development team is faced with the common question of how to take a desired set of functions (a.k.a., requirements) and partition the effort (requirements, design, code, and possibly team) appropriately. There are perhaps as many non-technical factors in this decision as technical. This section surveys some of these factors, giving guidance and identifying some signs that warn of possible problems ahead.

3.3.3.1 Minimize the Interdependence/Coupling of Resulting Beans.

When an application system or COE component is partitioned into beans, those beans should use either events (if sender and receivers are guaranteed to execute in the same JVM) or RMI /CORBA (otherwise) to communicate. A successful system partition minimizes the number of other beans with which a bean must communicate, and simplifies inter-bean communication as much as possible (to avoid misunderstandings of content or protocol). Developers should use events and RMI/CORBA for Java-to-Java communication since builder tools and Javadocs can capture these bean interfaces and the dependencies they imply. InfoBus can be used for dynamic (e.g., non compile time aware) data sharing between Beans.

3.3.3.2 Simplify the Assignment of Beans to Developers.

Ideally, a bean should be developed by exactly one developer or team. Use interfaces (bean boundaries) to minimize coordination required between developers. To achieve this for a bean, try to minimize the number of interfaces on which the implementation relies, and the amount of expertise required (encourage development teams to specialize).

3.3.3.3 Simplify the Mapping Between Desired System Functions and Beans.

For a moderately sized system, a good first cut at a partition into beans will allocate each unique function to a bean. Often, these beans will be further partitioned in accordance with 3.3.3.1, 3.3.3.2, and other guidance. Some functions will be provided by commercial components, simplifying the effective partitioning. Then, common functions can be merged where beneficial to the development effort. User requirements should be expressed as use-cases, which can be mapped to beans in an initial partition.

3.3.3.4 Use Tiers to Guide the Partition of a System.

A bean should not cross a tier boundary (see Section 2.3 and 2.4 for guidance on tiers). A bean’s code should not be partitioned into parts allocated to more than one (logical) tier. This implies that all the code of a bean sees a consistent set of service capabilities, based on its tier.

3.3.4 Bean Quality

Anyone developing reusable JavaBean components (which is encouraged), should use BeanLint to validate and warn of any potential problems which might prevent the Bean from loading or operating properly within an IDE or bean container. See [Johnson 1998, Johnson 1999].

3.3.5 Advanced JavaBean Integration

Since the introduction of the JavaBeans in the JDK 1.1 release in February 1997, additional specifications have been added to this component architecture such as the Extensible Runtime Containment and Services Protocol and the InfoBus standard extension. Both of these additions provide APIs that enable Beans to interconnect during run-time.

3.3.5.1 Extensible Runtime Containment and Services Protocol

The JavaBeans architecture sets rules for what makes a Java class a JavaBean. As previously discussed, it defines how, via reflection and introspection, the capabilities of a bean are discovered. Such capabilities can be a Bean's properties, the events a Bean fires, or its public methods. This information is used by development tools, such as Visual Café, VisualAge, Forte for Java, and JBuilder to provide a visual programming environment for connecting Beans (wiring one Bean's events to another Bean's public methods).

The BeanContext API that is defined in the Extensible Runtime Containment and Services Protocol adds much more flexibility to the basic JavaBean connectivity model. It enables a Bean to interrogate its environment for certain capabilities and available services. This allows the Bean to dynamically adjust its behavior to the container or context in which it finds itself. The BeanContext API is a core API in Java 2 and consists of two parts: logical containment hierarchy for JavaBeans, and mechanisms for discovery of services provided by the BeanContext.

When using Java 2, all COE-based systems using JavaBeans should apply the BeanContext API to their design.

3.4 (Non GUI) Unit Testing

3.4.1 Scope.

This section addresses unit testing for the business/domain classes (vs. GUI classes) in an application. These would generally reside in the “middle tier” of the architecture.

3.4.2 The Problem

Developers in general know they should write tests for their code, but not many actually do it systematically, especially when facing increasing deadline pressures.

3.4.3 Example Unit Testing Tools

3.4.3.1 JUnit

Kent Beck and Erich Gamma in conjunction with Martin Fowler (all three are well known Object Oriented [OO] authors and practitioners) have developed a simple, elegant, and free testing framework for Java, called JUnit, to facilitate and therefore encourage unit testing. [Beck 1998]. JUnit is a simple tool and framework that helps you build and run unit tests. Tests can be run interactively or via batch mode. JUnit provides mechanisms to define test cases, test fixtures (common set up for multiple tests), and test suites. For a more complete discussion of unit testing and JUnit, refer to [Beck 1998], and [Beck 1999]. The JUnit framework can be downloaded from http://www.xprogramming.com/software.htm.

3.4.3.2 Jtest

Jtest is a commercially sold “automatic” unit-testing tool for Java that automatically performs white-box testing (structural testing), regression testing, and static analysis for a class. It also helps automate black-box (requirements/specs based) testing. It does this by automatically generating a core set of inputs by analyzing the bytecode. Developers can provide additional sets of inputs to be tested. When the test is run, Jtest executes all the inputs and displays the outcomes for user review. It also supports regression testing. For more information, refer to http://www.parasoft.com.

3.4.4 Testing Practices

Developers should consider the approach of code a little, test a little, code a little, test a little. When you’ve determined a class’s responsibility and function, consider first writing a test to validate it meets requirements. Then, write the code and run the test.

As Beck/Gamma point out [Beck 1998], at first this may seem like extra work that slows you down, but soon you will begin to build up and reuse your library of test fixtures. Adding new tests will become very simple and thus developers will be quite willing to do so.

Benefits of quality assurance are obvious. Beck and Gamma offer this additional advice on how to write tests that offer the best pay back in information:

· During development, when you need to add new functionality, write the tests first. You will be done developing when the tests run successfully.

· During debugging, when a defect is found, first write a test that will succeed if the code is working. Then, debug until the test succeeds.

3.4.5 Summary

In discussing JUnit and testing practices, Beck and Gamma illustrate that a very small developer time investment pays off in faster, more productive, more predictable, and less stressful software development. Tools like JUnit or Jtest facilitate and encourage such practices.

3.4.6 COE Guidance

Developers are strongly encouraged to use JUnit, Jtest or other comparable free or commercial tools to support unit testing of their non GUI,”business” classes. Additionally, there are several commercial GUI testing tools on the market that should prove useful for UI testing.

3.5 Coding Style Guides

There are several good online references with Java coding standards - see [Ambler 1999], [Lea 1999], and [Sun 1999]. Particularly recommended are Sun’s Java Code Conventions, updated April, 1999, which can be found at http://java.sun.com/docs/codeconv/index.html. The naming conventions specified in section 9 of the Java Code Conventions should be supplemented with the naming conventions presented earlier.

3.6 Documentation

3.6.1 Javadoc

This section addresses the use of the JDK Javadoc tool to produce nicely formatted html documentation files. Javadoc should be used to describe the specifications of the COE code to be used by mission application developers.

3.6.1.1 What is Javadoc?

Possibly the biggest problem with documenting code has been maintaining that documentation separately from the code. Java provides a simple solution — link the code to the documentation, with everything in the same file. Java provides special comment syntax to mark special documentation and a tool to extract those comments and put them in a useful form. The tool to extract the comments is called Javadoc. It uses some of the technology from the Java compiler to look for special comment tags you put in the source code [Eckel 1999].

Javadoc parses the declarations and documentation comments in a set of Java source files and produces a corresponding set of HTML pages describing (by default) the public and protected classes, inner classes, interfaces, constructors, methods, and fields.

Javadoc will even run on Java source files that are pure stub files with no method bodies. This means you can write documentation comments and run Javadoc in the earliest stages of design while creating the API, before writing any code [Javadoc 1999e, Javadoc tool ref page]. Developers are encouraged to use this strategy.
Here is an example of the proper use of JavaDoc in source code:

/*

 * @(#)JButton.java
1.72 98/08/28

 *

 * Copyright 1997, 1998 by Sun Microsystems, Inc.,

 * 901 San Antonio Road, Palo Alto, California, 94303, U.S.A.

 * All rights reserved.

 *

 * This software is the confidential and proprietary information

 * of Sun Microsystems, Inc. ("Confidential Information"). You

 * shall not disclose such Confidential Information and shall use

 * it only in accordance with the terms of the license agreement

 * you entered into with Sun.

 */

package javax.swing;

import java.util.EventListener;

import java.awt.*;

import java.awt.event.*;

import java.awt.image.*;

import javax.swing.plaf.*;

import javax.swing.event.*;

import javax.accessibility.*;

import java.io.ObjectOutputStream;

import java.io.ObjectInputStream;

import java.io.IOException;

/**

 * An implementation of a "push" button.

 * <p>

 * To create a set of mutually exclusive buttons, create a {@link ButtonGroup} object and

 * use its <code>add</code> method to include the JButton objects in the group.

 * <p>

 * See How to Use Buttons

 * in The Java Tutorial

 * for further documentation.

 * <p>

 * For the keyboard keys used by this component in the standard Look and

 * Feel (L&F) renditions, see the

 * JButton key assignments.

 * <p>

 * Warning:

 * Serialized objects of this class will not be compatible with

 * future Swing releases. The current serialization support is appropriate

 * for short term storage or RMI between applications running the same

 * version of Swing. A future release of Swing will provide support for

 * long term persistence.

 *

 * @beaninfo

 * attribute: isContainer false

 *

 * @author Jeff Dinkins

 * @version 1.72 08/28/98

 * @see ButtonGroup

 */

public class JButton extends AbstractButton implements Accessible {

 /**

 * @see #getUIClassID

 * @see #readObject

 */

 private static final String uiClassID = "ButtonUI";

 private boolean defaultCapable = true;

 /**

 * Creates a button with no set text or icon.

 */

 public JButton() {

 this(null, null);

 }

3.6.1.2 COE Guidelines for Using Javadoc

3.6.1.2.1 All delivered COE Components should contain Javadoc comments. Use the Javadoc 1.2(or later) tool, not the one that comes with JDK 1.1.x.

There are many improvements with this latest version of Javadoc, and it can be used with code written for prior JDK versions. Javadoc 1.2 has many fewer bugs and many more features, and so is recommended over Javadoc 1.1. Some of the new features include the support for:

· Package level comments as well as system-wide (overview) comments.

· One-line summaries for classes and packages.

· Linkage between interfaces and classes that implement the interface.

· New tags for exceptions.

· Options for adding a unique title, header, footer, and bottom note.

· Improved navigation—adds optional HTML frames for lists of packages and classes.

· Doclet API — a doclet is like a “plug-in” for text conversion. A doclet specifies the content and format of the output to be generated by the Javadoc tool. A “standard” doclet for generating HTML format API documentation is what will be typically used. However, for special purposes, the custom doclets could be used to generate other text-file output in other formats such as XML or RTF.

3.6.1.2.2 In addition to embedding documents in source files for classes, interfaces, methods, and fields, developers should also use package comment files and overview comment files
3.6.1.2.2.1 Package Comment File [Javadoc 1999e, tool reference page]

Each package should have its own documentation comment, kept in its own “source” file, that Javadoc will merge into the package summary page that it generates. Developers should include in this comment any documentation that applies to the entire package.

To create a package comment file, you must name it package.html and place it in the package directory in the source tree along with the Java files. Javadoc will automatically look for this filename in this location.

The content of the package comment file is one big documentation comment, written in HTML, like all other comments, with one exception: the documentation comment should not include the comment separators /** and */ or leading asterisks. When writing the comment, you should make the first sentence a summary about the package, and not put a title or any other text between <body> and the first sentence. You can include tags. As with any documentation comment, all tags except “@link” must appear after the description. If you add a @see tag, it must have a fully qualified name.

When Javadoc runs, it will automatically look for the package comment file. Javadoc does the following:

· Copies all content between <body> and </body> tags for processing.

· Processes any package tags that are present.

· Inserts the processed text at the bottom of the package summary page it generates, such as Package Summary.

· Copies the first sentence of the package comment to the top of the package summary page and the overview page, such as Overview Summary. The end-of-sentence is determined by the same rules used for the first sentence of class and member descriptions.

3.6.1.2.2.2 Overview Comment File [Javadoc 1999e, tool reference page]

Each application or set of packages that you are documenting should have its own overview documentation comment, kept in its own “source” file, that Javadoc will merge into the overview page that it generates. Developers should include a conceptual overview description that applies to the entire application or set of packages.

To create an overview comment file, you should name the file overview.html and place it at the top level of the source tree.

The content of the overview comment file is one big documentation comment, written in HTML, like the package comment file. To reiterate, when writing the comment, you should make the first sentence a summary about the application or set of packages, and not put a title or any other text between <body> and the first sentence. You can include tags. As with any documentation comment, all tags except “@link” must appear after the description. If you add a @see tag, it must have a fully qualified name.

When you run Javadoc, you specify the overview comment file name with the overview option. The file is then processed similar to that of a package comment file.

· Copies all content between <body> and </body> tags for processing.

· Processes any overview tags that are present.

· Inserts the processed text at the bottom of the overview page it generates.

· Copies the first sentence of the overview comment to the top of the overview summary page.

3.6.1.2.3 Javadoc in the Source Code.

For rules about syntax, format, and placement, refer to the Javadoc tool reference page that comes with the JDK or available at Sun’s Java Web site [Javadoc tool reference page. Javadoc comments should follow the guidelines described in “How to Write Doc Comment for Javadoc”. [Javadoc 1999b]

3.6.1.2.3.1 Class/Interface

Included comments should describe the purpose of the class/interface. Optionally, describe invariants, usage instructions, and/or usage examples. These tags should be included in this order:

· @author

· @version

Optionally include @see, @since, @deprecated tags.

3.6.1.2.3.2 Method

Included comments should provide a brief description of method’s purpose, and optionally preconditions, effects, and usage instructions. These tags should be included in this order:

· @param (required for every parameter). List in argument declaration order

· @return (not required for constructors nor methods that return void)

· @throws (list alphabetically by exception names).

Optionally, include @see, @since, @deprecated, @serialData tags

3.6.1.2.3.3 Class Instance or Static Variables (Fields)

Included comments should describe the purpose and constraints. Optional tags include @see, @since, @deprecated, @serial, and @serialField

3.6.1.3 You can run Javadoc on classes and on packages.

For detailed instructions on running Javadoc, refer to the Javadoc tool reference page [Javadoc 1999e].

3.6.1.4 Available Tools

Several scripts and tools are described in “Javadoc Tips” [Javadoc 1999d]. These include support for recursion over source directories, utilities for writing Javadoc comments, search facilities for the generated documentation, tools to check quality of the Javadoc comments, and a preprocessor that enforces @pre, @post, @invariant conditions as available in Eiffel.

3.6.2 Other Design Documentation

This section addresses the minimal design documentation that should be included in the programmers’ guide and should be provided for use by COE and mission application developers. These artifacts provide the minimal information needed for developers to understand how to use the software. They include class diagrams, use cases, and interaction diagrams (either sequence and/or collaboration) expressed in UML notation and code usage examples. Optionally, the documentation could include package diagrams. Refer to [Fowler 1997] for more information on applying UML, and [Jacobson 1999], or [Rumbaugh 1991] for more information about object modeling.

3.6.2.1 Class diagrams.

These diagrams represent the key abstractions (classes and interfaces) being used in the software. They show the types of objects and the static relationships (associations and subclasses) among them. If these diagrams are not done as a natural part of the analysis and design process (recommended) they can always be reverse engineered from the actual source code. Several tools, some of them free or quite inexpensive, do this quite well [e.g. Together/J 1999, JaVision 1999, SoftModeler/Business 1999].

3.6.2.2 Use Cases.

These describe typical interactions between a user and the computer system. A use case can have more than one scenario associated with it; a scenario refers to a single path/thread through the use case. For the COE developer documentation, the use case should address typical usage scenario(s) that the MA developer must address. A good source for identifying use cases is external events. Some examples for the ICSF software might include:

· A user selects an object on a chart/map and displays additional information from a database associated with the object

· A new type of message must be received, decoded, and input to the track database for subsequent display on the COP.

3.6.2.3 Interaction Diagrams.

These illustrate how a group of classes collaborate to accomplish a use case scenario. Typically, for simplicity, an interaction diagram should capture the interactions of a single use case scenario. The diagram shows a number of example objects and the sequence of method invocations between these objects. There are two kinds of interaction diagrams—sequence diagrams and collaboration diagrams. The choice of which to use is left to the developer.

3.6.2.4 Code Usage Examples.

These are vitally important for developers to understand how to use the classes and methods in order to develop applications.

3.6.2.5 Package Diagrams

These illustrate packages of classes and their interdependencies. [3.6.2.8]

3.6.2.6 Packaging the Documentation.

The documentation should be driven by the key, illustrative use cases. Note that for any software there could be many use cases. The documentation should include just that handful of use cases that can illustrate essential concepts. For each use case, include:

· The corresponding subset of the class diagram

· The interaction diagram showing how those classes collaborate to accomplish the use case

· Code examples, snippets showing how the developer could implement the use case

3.7 JRE, Versions

The JDK consists of the software and tools that software developers need to compile, debug, and run Java language applets and applications. The JRE is made up of the JVM, the Java platform core classes, and supporting files. It is the runtime part of the JDK. It does not contain the development tools such as compilers and debuggers. The DII COE will provide the latest version of the JRE for each of its supported platforms as soon as possible after it becomes available.
 Although JREs for both Java 2 and 1.1 will be available within the COE, all new Java development efforts should use Java 2. JRE 1.1 will be available primarily for compatibility with older Java applications
.

3.7.1 Other JREs

There are multiple JREs available for the NT. However, the use and packaging of JREs, other than those provided by the COE, is strongly discouraged.
4 Guidance for Client Side Development

4.1 Graphical User Interface (GUI)

The Java Foundation Classes (JFC) extend the original Abstract Windowing Toolkit (AWT) by adding an extensive set of GUI class libraries based on lightweight components. These guidelines strongly encourage the adoption of the JFC, the Swing components in particular, for all Java-based GUI DII COE software. Using a standard GUI toolkit is particularly important for DII COE systems and components, since there are many different types of users who require a consistent look and feel (L&F) across different platforms. The use of other Java-based GUI building toolkits should be only in cases where the same functionality cannot be obtained using the JFC. There are five features of the JFC that should be used where applicable by developers of DII COE software.

1. Project Swing GUI Components: These lightweight components (not relying on underlying heavyweight peer components) are written in the Java programming language, without window-specific code. This facilitates a customizable L&F without relying on the native windowing system, and simplifies the deployment of applications. Using Swing components provides the ability to run on many types of platforms without code changes which is very important in the DII COE environment.

2. Pluggable Look & Feel: This feature gives users the ability to change the L&F of an application without restarting it and without the developer having to subclass the component set. Currently, DII COE guidance is that the UI should reflect the L&F of the underlying platform. (See 4.1.2.1.)

3. Accessibility: Support for People with Disabilities: The Accessibility API provides an interface that allows assistive technologies to interact and communicate with JFC and AWT components. Assistive technologies are used by people with and without disabilities and include screen readers, screen magnifiers, and speech recognition. Software developed for the DII COE should be able to support assistive technologies when these technologies are necessary and possible.
4. Drag and Drop: This feature should significantly improve application interoperability by enabling Drag and Drop between those applications incorporating Java technology and those not incorporating it. Drag and Drop will allow applications written by separate organizations to become interoperable, and for this reason, its use is recommended when developing DII COE GUI components.
5. Java 2D API: This API provides additional graphics features including fancy paint styles, defining complex shapes, and controlling the rendering process.

Most Swing components are lightweight, which means that these components are not dependent on native peers to render themselves. Using simplified graphics primitives to paint themselves, Swing components can even be transparent. Using Swing lightweight components results in faster, less memory-intensive graphics than were previously available in the Java AWT.

4.1.1 Avoid Win 32 Native AFC

About the same time that the JFC was introduced, Microsoft announced a similar framework under the name Application Foundation Classes (AFC). Both of these frameworks are similar with the exception of the event mechanism. However, AFC is geared to a windows centric environment. The DII COE needs applications which run on both Windows and Unix systems and therefore, is strongly encouraging the use of JFC for Java GUI applications. Developers should avoid using AFC for Java-based application targeted for the DII COE.

4.1.2 Look & Feel

One of the most promising aspects of the JFC is the ability to change the L&F of each application at run-time. Swing is capable of emulating the L&F of Windows 98/NT and Unix Motif. In addition, Swing comes with a default L&F called “the Java L&F,” formerly known as “Metal.” When developing GUI-based applications for the DII COE, applications should adopt the native L&F of the deployment platform. Users should not be provided with a selectable choice of L&F. For a more detailed discussion of UI design, please refer to “User Interface Specifications for the DII” [UI 1999].

4.1.3 JFC/Swing Version and JRE Version
Java2 contains the entire JFC, including the Swing 1.1 API and the Java 2D API. The Swing 1.1 and 1.03 API can be downloaded separately for use in JRE 1.1.x. The DII COE will contain the latest versions of Swing for JRE 1.1.x applications. Other than Swing, none of the other JFC components are available for JRE 1.1.x. Swing 1.03 should not be used for Java 2 applications, as it is minimally supported by Sun for Java 2. Developers are also encouraged to use Swing 1.1 (or higher) classes for JRE 1.1.x applications.

5 Guidance for Server Side Development

Section 2 of this document describes distributed and multi-tiered computing in detail. This section discusses specific Java APIs and frameworks that support the development of multi-tiered server functionality. These include off the shelf application servers, Web development frameworks, and other functionality.

5.1 Java 2 Enterprise Edition

In an N-tiered application there are typically a large number of functions common to all server side components. These functions include security and user authentication, logging, transactions, application management, threading and scalability functions, and other infrastructural concerns. Application servers exist to provide this common functionality in COTS packages and to reduce the amount of custom code that the application’s designers must implement.

The Java 2 Enterprise Edition (J2EE) is a standard application server framework. This framework defines a component architecture for N-tiered Java applications, as well as the standard server functionality described above. J2EE implementations are available from a wide variety of commercial software vendors. At the time of this writing, open source implementations are also under development.

5.1.1 J2EE Architecture

The J2EE runtime environment consists of the following parts:

· Application Components

· J2EE Containers

· J2EE Standard Services

5.1.1.1 Application Components

The J2EE programming model defines four types of application components:

· Stand-alone Java applications

· Java Applets deployed in a client side container (i.e. Web browser)

· Web clients implemented as Java Servlets or JavaServer Pages (JSP)

· Enterprise JavaBeans (EJB) which implement data modeling and business logic

These components will be described in more detail in later sections of this document.

5.1.1.2 J2EE Containers

Containers provide the runtime support for the application components. The J2EE container is provided by the commercial (or open source) J2EE implementation. The container interposes itself between the client and the application component and provides the generic server functionality described in section 5.1.

5.1.1.3 J2EE Standard Services

The J2EE includes the following standard services:

· HyperText Transport Protocol (HTTP)

· HyperText Transport Protocol Secure (HTTPS)

· Java Transaction API (JTA) – An API used to demarcate transactions

· Remote Method Invocation/Interorb InterOperability Protocol (RMI/IIOP) – A remote method call mechanism used for distributed applications

· Java Interface Definition Language (JavaIDL) – A standard mapping of CORBA IDL to Java which allows J2EE components to invoke external CORBA objects

· Java DataBase Connectivity (JDBC) – An API for connectivity with database systems

· Java Message Service (JMS) – A standard API for messaging, including publish and subscribe and queuing functionality

· Java Naming and Directory Interface (JNDI) – A standard API for naming and directory access

· JavaMail – A standard API for sending and receiving Internet mail

· JavaBeans Activation Framework – An infrastructural component used by other pieces of the J2EE framework

5.1.2 J2EE Application Model

The J2EE application model can be broken into five tiers:

· Data storage

· Data Access

· Business logic

· Presentation logic

· Presentation display

These five tiers map well to the architecture defined in Section 2 of this document.

5.1.2.1 Data storage

In many applications the data storage layer will be a relational database. In some cases the J2EE application may be used to front end a legacy system or non-relational database. While the J2EE provides support for both of these uses, the details of these mechanisms are beyond the scope of this document.

5.1.2.2 Data Access and Business Logic

The J2EE specification relies on Enterprise JavaBeans to implement both the data access and business logic tiers. EJB is a specification [EJB 1999] that defines both how to build a development framework and how to build application logic components (in the form of Enterprise JavaBeans) that can plug into an EJB compliant server. The EJB specification is appropriate for both developers of functional logic components and of logic container frameworks (though typically, application developers will purchase the container from a commercial vendor or obtain an open source implementation). The EJB framework implements all functionality commonly needed by scalable server-side components. This functionality includes:

· Automatically threading requests to the server side component

· Automatically mapping state variables in the EJB to columns in an RDBMS

· Automatically demarcating database transactions, creating and retrieving rows in the RDBMS

· User Authentication

· Application distribution

and other features.

EJB compliant implementations are available from many vendors and the J2EE compatible brand ensures portability of EJB components between these implementations. In addition to Java based clients, there is support for CORBA clients, via the EJB to CORBA mapping [EJB-CORBA 1999], and support for COM clients, such as Visual Basic, either via COM-CORBA bridges or other vendor solutions.

Because of its cross platform/cross vendor support
 and its potential to reduce the amount of code that must be developed for an application, Enterprise JavaBeans is the recommended component framework for data access and business logic in Java based n tier COE applications. Note also that the OMG has adopted the EJB model for the CORBA 3.0 component model.
5.1.2.2.1 EJB Application Architecture

Enterprise JavaBeans applications consist of several parts. There is the data store for the persistent state of the beans. This will typically be a Relational Database, though other mechanisms, such as Object Relational DataBases, Object-Oriented Data Bases, or flat files, can be used. The J2EE server provides the run-time environment for the server side components and the Enterprise JavaBeans themselves define the state stored in the bean and implement the business logic of the application. There is also a set of interfaces defining calls that can be made on a bean. When a bean is installed in a server, remote proxy objects are created that implement these interfaces. Clients of the bean make calls to these proxies, which forward the requests on to the J2EE server. In some cases, the J2EE server will process the request, as in the case of a client requesting that a new instance of a bean be created. In other cases, the bean itself will process the request, as in a client making a call to a pre-existing bean.

5.1.2.2.2 Home and Bean Interfaces

Higher level components interact with EJBs through two interfaces, the home interface and the bean interface. The component developer defines both these interfaces. These interfaces are the contract that describes what these beans can do and how a client can access that functionality. Both are standard Java interfaces and should conform to the recommendations for method naming, package names, and other guidelines.

The home interface contains all methods used by a client of the bean to find existing instances of the bean or create new instances. Methods with names of the form createXXX(arg1, arg2, arg3...) will create a new instance of the appropriate EJB. For simple bean states, a new row in the database (assuming an RDBMS is being used to store the state of the bean) will also be created and populated with the appropriate data. The arguments passed into the create method can be used to set the initial state of the bean (and values of the associated database row). The bean can also do any data checking and validation required by the application. Methods with names of the form findByXXX(arg1, arg2, arg3...) are used to retrieve an existing EJB. If the states of the EJBs are stored in an RDBMS, these methods will query the database and return a collection of beans representing all rows that match the query. There is one special function, findByPrimaryKey, which must be defined by all entity beans (see below). This method is automatically generated by the EJB server and is used to look up a bean given the value of its primary key. The EJB server processes all calls to the home interface. The server automatically creates implementations of these methods when the EJB is installed.

Once a handle to the desired bean has been retrieved, the client can make calls to the bean’s bean interface. This interface defines the business logic, which the bean is able to perform. The component’s developer must define and implement all methods in the bean interface.

5.1.2.2.3 Session Beans

In some architectures it is desirable to have a temporary object that can provide behavior and act as temporary storage of data, but which does not persist any data stored in it. Session beans act as an extension of the client and are responsible for managing processes or tasks. [Monson-Haefel 2000] Shopping carts are the typical example of such objects. A client can create a shopping cart bean, store objects in it, and ask it to perform some operations, like calculating a purchase total. If an error occurs during the life of the Session bean, like a client disconnects unexpectedly, the Session bean is lost. The purchased items stored in the bean are not stored permanently anywhere. A DoD COE application might create a correlator session bean, which talks to entity beans (see 5.1.2.3) representing persistent track data. Session beans have the following characteristics:

· They are a private resource for the client that created them. Session beans are typically not shared between clients.

· Since they don’t persist their data, all information stored in them must be “disposable”.

· They can be created and destroyed quickly, since they are not kept in sync with some external data store.

· Session beans can implement any number of create methods with different arguments to control how the bean is implemented.

· They do not implement any findBy methods, since they are never stored in any way that allows them to be recovered later.

5.1.2.2.4 Entity Beans

In other cases, an application’s data must be stored permanently. While the data in a shopping cart bean may be considered “disposable,” once the user presses the “Place Order” button, the application must create an order, which is recorded in some permanent data store. For a DII COE application, an Entity Bean might be a track, an air route, or a transport. In the EJB architecture, Entity Beans are used to store such data, and represent “business objects”. For simple object structures, a single Entity bean will map to a single data item written to some persistent store; for example, an employee Entity bean could represent a single row in an HR database.

Entity beans have the following properties:

· Data, represented as state variables in the bean, are persistently stored.

· Entity beans implement both create and findBy methods.

· Entity beans must implement a findByPrimaryKey method.

· Entity beans can be shared between clients.

· If the persistent store for the bean is a database, the EJB server can automatically implement many of the methods for creating and finding an Entity bean.

· Creating and destroying entity beans is more expansive then similar operations on Session beans, since an external persistent store must be kept in sync.

In many applications a client will create a Session bean, which will then manage collections of Entity beans. The business logic of the application will be implemented in the Session bean and used to find, create, and delete Entity beans as needed. Business logic can also be implemented directly in the Entity beans. Support for Entity beans, in addition to Session beans, is now mandatory as part of the EJB 1.1 specification.

5.1.2.2.5 Container and Bean Managed Persistence

EJB servers can automatically map the state of Entity beans to a persistent store. This is known as container-managed persistence (CMP). CMP is recommended for most cases where development tools and servers support it, such as RDBMSs, CICS, etc.

In other cases, the EJB developer can use bean-managed persistence (BMP) to handle storage of bean data. In BMP, the developer of the bean must provide methods that can load, store, modify, and destroy the bean’s state. These methods have standard names defined by the EJB spec. With BMP, any mechanism can be used to communicate with the persistent store. For example, the store may be a flat file accessed by java.io, or it may be an existing server with its own socket protocol. BMP can be used to hide an older service or tier under an opaque EJB interface. New systems will access the older service only through the EJB interface. This technique can be used to isolate the old system from the new development, allowing the old system to be replaced without impacting newly deployed services.

5.1.2.3 Presentation Logic and Presentation Display

As described in Section 2, it is often helpful to separate the code generating the applications presentation from the code that actually renders the display. While this code might actually exist in the same program and process (as is the case in stand-alone Java applications and Java applets), in web based applications this code is split with the presentation logic running in the Web server and the display running in the Web browser or other display devices (i.e. wireless PDA, cell phone, etc.)

This section will describe several technologies in the J2EE platform for use in Web servers and HTML page generation. See section 4 for guidelines on rich client (Java application and Java applet) development.

5.1.2.3.1 Java Servlets and JavaServer Pages

Applications that deal with simple data types: textual and tabular data and photographs and 2D graphics, can be easily adapted for Web deployment. The user interface is displayed as HTML pages in a Web browser and the user interface logic runs as an extension to the HTTP server. The Java platform specifies a mechanism, called Servlets, for building such extensions in Java. All major HTTP servers, including Netscape, IIS, Apache, Sun Web Server, and the Java Web Server support the Servlet APIs.

The Servlet API allows a developer to create a Java class that implements (some) business logic and the HTML generator for a Web application. This object can then be installed in the HTTP server and associated with a URL. When a client accesses the URL, the Servlet is invoked and its output returned to the client browser. The Servlet infrastructures provides automatic support for HTTP PUT and GET protocols, session management, and other functions.

JavaServer Pages provide an easier, more natural way to generate HTML in a J2EE application. The JSP technology allows the author to mix HTML and Java code freely within a single file. At runtime the J2EE server merges the HTML and Java code into a single Java servlet. Since much of the tedious output code needed to write a servlet is now done automatically by the J2EE server, using JSP can significantly cut development time and allows non-technical authors to develop application content.

JavaServer Pages should be used for implementing any HTML based Web applications. Java Servlets may also be used in those cases when the application is not generating HTML output, but instead is used to generate some other MIME type.
5.1.2.3.2 XML

The eXtensible Markup Language provides an excellent data representation for use in integrating legacy and modern systems and for building loosely coupled systems. It’s portable, self-describing data format has been used in a wide variety of domain specific languages and is increasingly being used in COTS products. Both JSPs and Servlets can be used to generate XML output. XML parsers, written in the Java Language, are also freely available so J2EE components can consume XML messages and data generated by other systems. COE developers should consider using XML data representations whenever a standard XML based language exists for their domain or when the data generated by their component may be consumed by another component rather than being displayed directly in a Web browser or other human readable format.

5.1.2.3.3 Replacing CGI scripts

Java Servlets and JSPs fill essentially the same role as the CGI-bin system traditionally used to build Web applications. Java Servlets, however, have many advantages over CGI implementations. CGI scripts typically execute as separate processes, which are spawned by the Web server every time an HTTP request for that script is received. Servlets, on the other hand, are dynamically loaded into the Web server and run as separate threads in the Web server’s JVM. Generally, CGI scripts are often resource intensive and slow compared to Servlets. Servlets eliminate much of the operating system overhead needed to run Web applications. Servlets, because they are written in the Java language, provide cross platform portability and also tend to be more reliable and more secure
 than CGI scripts written in Perl, shell languages, or 3GLs like C or C++. Finally, CGI applications tend to be difficult to maintain because they combine content and display logic in one code base [J2EE Blueprint 2000]

For these reasons, JSPs and Java Servlets are the recommended way to implement Web applications in the COE. CGI scripts should not be used, except in cases where legacy CGI functionality is already deployed and must be supported.
5.1.2.3.4 Java Servlet Beans

The Servlet APIs also defines a JavaBean form of a Servlet object. This bean is a standard JavaBean (see Section 3.3) that happens to also implement Servlet functionality. This bean contains properties, like any other bean, and uses the getXXX and setXXX naming convention to access these properties. When deployed in a Beans-capable HTTP server, the server can examine the Servlet Bean and present the administrator with the names and default values of the properties that must be set to install this bean. This makes it easier to deploy the bean and to ensure proper set up. Bean properties can also be modified on the fly without stopping and restarting the Servlet.

All COE servlet components should be written as JavaBeans.

5.1.2.3.5 Business Logic in Servlets and JSPs

Tight binding of business logic and HTML generation is undesirable because it reduces the reusability of the logic. While a Servlet or JSP must have some logic in it to make the proper calls to lower tiers of the architecture and to generate the HTML for the user interface, neither Servlets nor JSPs should be used to implement any fundamental business logic. Such logic should be implemented in an EJB and accessed by the presentation logic tier.
5.1.3 Application Servers

The J2EE specification is typically implemented by an Application Server, as a standalone server, or as part of a database or extension to a web server. Application servers provide all the benefits of code and framework reuse and Java standard APIs. They also usually add mechanisms to ease deployment and management. The use of J2EE compliant application servers is recommended for Java-based multi-tier COE applications.
5.1.3.1 Vendor Specific Web Application Server Extensions

While most Application servers provide full support for open Java standards, they also frequently implement proprietary extensions and functionality. Since these vendor specific extensions sacrifice portability, they should not be used without carefully examining open alternatives.

5.1.4 J2EE Attributes and Environment settings

The J2EE infrastructure supports runtime and deployment time attributes for EJBs, Servlets, JSPs and client components. For example, a Servlet may need to connect to a database. Instead of hardcoding the JDBC URL into the Servlet, it could be defined as a runtime attribute. Using administrative tools provided by the J2EE server, the appropriate value for that attribute could be defined when the Servlet is installed, and the Servlet can use a standard Servlet API to fetch the attributes value when it starts. Using attributes makes it much easier to deploy a component. Attributes should be used in COE components for all deployment and run-time definable data.
5.1.5 J2EE Server Compatibility

The J2EE specification defines a test suite that ensures components written for one server will be compatible with another vendors server. This compatibility facilitates COE component reuse by other groups regardless of which J2EE server is deployed by that group. To ensure that J2EE components written for the COE are truly vendor independent, EJBs should be written to avoid proprietary vendor functionality and only J2EE branded application servers should be deployed.

Deployment issues like licensing, management, and vendor relations may make it desirable for an organization to standardize on a single vendor’s EJB server. However, even in this case, care should be taken to ensure the portability of components written for the COE.

5.1.6 Server Side Framework and a multi-tier architecture

The following diagram attempts to illustrate the relationship between the technologies discussed in Section 5.1 and the 6-tiered architecture example discussed in Section 2.4.3.

[image: image8.wmf]Data Repository

Data Interface

Logic Container

Business Logic

User Interface Logic

User Interface Engine

Interface

Logic

Data

Browser

Applet

Applica

-

tion

JSP

Servlet

EJB Server

Web Server

Servlets

EJBs

JDBC

OO to Rel

Mapping tools

OODBMS

API

Legacy

Protocols

RDBMS

ODBMS

Legacy

Figure 5. n tier architecture example
5.2 Legacy Application Integration

In a typical development effort, only a fraction of the resulting system will be new code. Often, the capabilities and characteristics of the pre-existing, or legacy, applications will drive parts of the new development effort (assumed to be in Java in this document). This section briefly surveys some of the possible approaches to integration with legacy applications and gives some guidance for this common aspect of Java development.

5.2.1 Integration Technologies

The advent of distributed object and Web computing has brought on multiple integration technologies. While this document will not attempt to cover all these technologies, it is important for the Java developer to be aware of the kinds of solutions available.

5.2.1.1 Wrap legacy applications using CORBA (preferred), RMI, or JNI.

A very generic way to make a legacy application available to new Java code is to provide a wrapper object, implemented in Java, that provides an interface for the desired legacy functionality and a class that accesses the legacy application. With the standardized, bi-directional mapping between Java interfaces and CORBA IDL, new Java code can communicate with these wrappers using RMI and/or IIOP. As discussed previously, in some situations, JNI may also be appropriate.

5.2.1.2 Use Appropriate Technologies for Access to Legacy DBMSs.

JDBC (described in Section 2.4.1.1) can be used to access legacy relational DBMSs. In some cases, it is more cost effective to access the database of a legacy system rather than attempting to access or re-implement the functionality provided by the legacy GUI. Often, both approaches will be useful.

5.2.1.3 Use message-oriented middleware (MOM) to access legacy batch and mainframe applications.
MOM is architecturally very similar to distributed object technology. Both involve some form of wrapping of the legacy system. With MOM, the wrapper receives and sends messages as appropriate for interaction with the application. New Java classes or beans can subscribe to receive messages as needed, and can send messages to access functionality or data. MOM has been shown to be useful for a variety of mainframe applications and batch processing [Betanov 1997]. Java code can use the emerging Java Message Service [JMS 1998] or use CORBA services (the Event and/or the newly defined Asynchronous Messaging Service) [COSS 1994]. As with the distributed object approach, the wrapper may be implemented in a variety of ways.

5.2.2 Integration Approaches

Given the right technologies for integrating a legacy application in a new development, there remains the question of how to use these technologies for best benefit.

5.2.2.1 Provide Multiple Interfaces to Legacy Applications as Appropriate.

For a large legacy application, it may be appropriate to provide more than one wrapper interface and object. For example, the application may implement functions that need to be used by different new systems. Java allows a wrapper to implement multiple interfaces, and a similar effect can be obtained by using multiple CORBA wrappers that access the same legacy system (currently) or by defining multiple CORBA interfaces for a wrapper (in CORBA version 3). If necessary, the wrapper object could use JNI or other mechanisms to access the legacy application. A comparable alternative is to build a CORBA wrapper implemented in (one of) the programming language(s) used by the legacy application.

5.2.2.2 Minimize Changes to the Legacy Application.

A change to a legacy system tends to be at least an order of magnitude more expensive than a comparable change to new code. It is usually preferable to wrap a legacy system, then gradually replace parts of it with new components (multi-interface wrappers are helpful), then eventually retire the legacy system.

5.3 Security of Mobile Server-Side Code

While server-side Java components are subject to the same sorts of security attacks that threaten all server processes, they are generally immune to the security concerns raised by mobile client-side Java code. Server-side Java components, which are manually loaded on to the local machine by trusted persons, are no different from mid-tier components written in any other language. The exact same security concerns and precautions apply, regardless of the implementation language of the component.

In some cases, however, Java Server-side frameworks can import code from a remote location and execute that code to extend the functionality of the server. Many EJB implementations and Web servers that implement Java Servlets allow for the loading of beans and other components from a network URL. Mobile server-side code provides all the same advantages that mobile client-side code does. It makes remote administration and updates easier and allows for ad hoc deployment of application components. With the availability of the Jini Connection Technology, mobile server code also enables agent based computing systems, which will be of increasing importance in application design.

But, like mobile client code, mobile server code also raises some security concerns. If malicious code is imported into a server, it can compromise site security. To mitigate this threat, the designers of systems that allow for mobile server code have built in the same security systems which exist in Web browsers and other mobile code systems. If your application design depends on mobile server side code, and such a system is allowed by your site’s security policy, you should take advantage of these mechanisms to control what mobile code can be imported into your servers and what that code can do once it is loaded.

At minimum, your server should require that all mobile server code be signed by a trusted party or parties. Your site policy should forbid importing unsigned or untrusted code. If your server is running on the Java 2 platform, you should define a Java Protection Domain for each source of authorized mobile code and allot to that domain only those privileges needed by that code to do its job.

Developers are urged to refer to the appropriate DoD Security policy (e.g. [DoD1 2000]) and their appropriate program office for specific guidance which might supercede this general guidance.
6 Performance and Exception Handling

It is almost always the case that your program can never run “fast enough” and have enough capacity. In addressing program efficiency and optimization, there is both a “strategic level” and a “tactical level”. The strategic level issues relate to overall system design and architecture. The issues at this level are described in the following quote from “On a Language Based Method For Software Performance Engineering Of Client/Server Systems”, [Proc 1998].

“Designing complex distributed client/server applications that meet performance requirements is not a trivial task for complex and distributed systems. A large number of software architectural choices may severely impact the performance and cost of the resulting system. Examples of these options include the distribution of work between client and server, use of multi-tiered architectures, distribution of functions among servers, distribution of database tables among servers, type of client and servers, and network connectivity.”

This illustrates the point that no amount of code “tweaking” will overcome fundamentally flawed architectural decisions. On the other hand, at the “tactical” level, there are some general principles that are very relevant for consideration during coding (in Java or in any language). These general principles are presented by Kernighan and Plauger [Kern 1978]:

· If a program is wrong, it doesn’t matter how fast it is. Get it right before you “improve” it.

· Keep code clean and straightforward – don’t try to make it fast while coding. Premature optimization is the root of all evil.

· Worry about the algorithm, not about the details of the code. Remember that data structure can profoundly affect how an algorithm must be implemented.

· Instrument a program during construction. Measure before deciding on efficiency changes.

There is one other point to consider when discussing program performance. No amount of speedup can answer the question “Is this good enough?” or even “will it get to good enough?” without agreement on what the measurable system performance requirements are for specific repeatable scenarios, on specific platforms. Therefore, developers should establish measurable system performance requirements for specific repeatable scenarios, on specific platforms, before undertaking systematic performance improvement.
The following section will present a collection of specific “lessons learned” related to performance assessment and improvement for Java programs, keeping in mind the general significance of the strategic level decisions which are out of scope for a collection of Java Development Guidelines. These lessons learned are all consistent with the broad organizing principles identified by Kernighan and Plauger.

Some of the topics in this section reflect lessons learned from developers’ early experiences with using Java to develop COE components. Others were chosen from industry sources that apply to Java software development in general. There is a wealth of good information available to help developers write Java that performs as well as other languages. Therefore, this section focuses on identifying the relevant topics and pointing the reader to easily accessible sources of detailed performance guidance.

6.1.1 Writing High Performance Code

6.1.1.1 General Design and Coding Guidance

http://www.cs.cmu.edu/~jch/java/maintainability.html
Title: Optimizing Java for Maintainability

Description: Lists some rules of thumb for implementing maintainable code.

http://www.sdmagazine.com/breakrm/features/s991f1.shtml
Title: Putting Java Performance to the Test by Steven Gutz

Description: “Along with Java's flexibility and power come some potentially serious problems. You can avoid these and other performance problems through careful design and implementation of a Java application”

6.1.1.2 Profiling

Execution profiling is used to determine the amount of resources consumed by specific locations in a program while responding to specific inputs. For example, running a Java program with the –Xrunhprof option allows the recording of heap utilization.

http://www.cs.cmu.edu/~jch/java/tools.html#profiling
Title: Tools for Optimizing Java

Description: Lists a number of tools one could use to understand the execution of your Java program.

http://developer.java.sun.com/developer/TechTips/2000/tt0124.html#tip1
Title: Java Developer’s Connection: Tech Tips January 24, 2000

Subtitle: Using HPROF to Tune Performance

Description: Describes how to generate an execution profile from the Sun JRE, and how to read the resulting report.

http://www.sdmagazine.com/breakrm/products/reviews/s9912r2.shtml
Title: Measuring Java Performance by Larry O'Brien

Description: “An understanding of modern hardware architecture and a survey of typical systems shows that Java is arguably a superior choice.”

http://www.klgroup.com/jprobe/index.html
Title: JProbe Java Performance Tools

Description: Product information about the JProbe profiling application.

http://www.optimizeit.com/oproductinfo.html
Title: Intuitive Systems OptimizeIt Product Info

Description: Product Information about the OptimizeIt profiling application.

6.1.2 Multi-threading

6.1.2.1 Appropriate use and inappropriate use

The Java programming language directly supports concurrency via a lightweight threading mechanism. Java’s lightweight threading can be used to address issues associated with external interaction (e.g., handling multiple I/O streams or supporting multiple GUI elements) and can be used to effectively model the real world (e.g., objects that use internal threads). On the down side, concurrency can lead to deadlock, race conditions and stalls that are typically, because of their intermittent nature, hard to find. Also, without careful design and implementation attention, concurrency can lead to performance and reliability problems.

When looking to threads for performance gain, developers should look for a natural decomposition of processes. For example, if the task at hand is reading data from an input device, acting on it and then displaying it, a natural decomposition would be the following: one thread could fill buffers from an input device, a separate thread could be responsible for processing this data, preparing it for display and a third thread would be responsible for displaying the results. In this example, each one of these processes is independent, allowing the others to operate when one blocks. Also, keeping these three concerns separate gives the programmer an opportunity to tune each process separately and the interfaces between them to enhance the real and perceived performance of the application.

http://www.javaworld.com/javaworld/jw-04-1996/jw-04-threads.html
Title: Introduction to Java threads

Author: Donald G. Drake

Subtitle: Priorities

Description: This article clearly describes what threads are and how to use and control them.
6.1.2.2 Synchronization model

http://developer.java.sun.com/developer/TechTips/1998/tt0915.html#tip1
Title: Java Developer’s Connection: Tech Tips September 15, 1998

Subtitle: Using Synchronized Statements

Description: Illustrates the importance of using synchronization to ensure mutual exclusion.

http://www.javaworld.com/javaworld/javaqa/1999-11/02-qa-semaphore.html
Title: Semaphore

Subtitle: Does Java support the semaphore mechanism?

Description: This article describes the Java synchronization constructs, and how to implement semaphores using them.

6.1.2.3 Thread priorities

http://java.sun.com/docs/books/tutorial/essential/threads/priority.html
Title: The Java Tutorial

Subtitle: Understanding Thread Priority

Description: A clear and comprehensive description of thread priority and how it affects the scheduler.

http://www.javaworld.com/javaworld/javaqa/1999-10/02-qa-native.html
Title: Thread use in Java

Subtitle: Adapt your code to handle both green and native threads

Description: A brief article describing the scheduling in green versus native threads. There is a paragraph that talks about how the threading model, thread priority and programming practices influence program execution.

6.1.3 Introspection

Introspection, also referred to as reflection, is the ability to query a Java class about its properties, and to operate on methods and fields by name for a given object instance. Although this is a powerful capability, there are performance implications associated with its use. Developers should minimize using introspection in time sensitive portions of the application, and in cases where this cannot be avoided due to architectural considerations, use introspection only when no other recourse is available.

http://developer.java.sun.com/developer/TechTips/1997/tt1216.html#tip2
Title: Java Developer’s Connection: Tech Tips December 16, 1997

Subtitle: Reflection

Description: Describes what Introspection is, and gives code examples on how to implement it.

http://java.sun.com/docs/books/tutorial/reflect/index.html
Title: The Java Tutorial

Subtitle: Trail: The Reflection API

Description: Describes Introspection and includes guidance on using it appropriately.

6.1.4 Dynamic Class Loading

The Java language provides a facility for explicitly loading classes using Class.forName(). Its power lies in the ability to load classes that aren’t known until runtime. Generally, classes should be loaded as needed vs. ahead of time, because loading a class triggers the loading of any of its ancestor classes and related interfaces. However, frequently used classes can be preemptively loaded ahead of time to improve the perceived responsiveness of the application. This is a common technique for improving the responsiveness of graphical interfaces.

6.1.5 Smart use of memory

Memory is an important consideration in any application regardless of the language; Java is no exception. Java’s garbage collector frees the programmer from the burden of explicitly reclaiming memory, but this freedom comes with a price. Many virtual machines suspend all threads during garbage collection to avoid memory corruption. Even with the advent of incremental garbage collection (or pauseless garbage collection) available in Hotspot based virtual machines, garbage collection still influences application performance. In short, good memory management and a properly tuned Java runtime environment are essential ingredients for a well performing Java application.

http://developer.java.sun.com/developer/TechTips/1997/tt0903.html#tip2
Title: Java Developer’s Connection: Tech Tips September 3, 1997

Subtitle: Performance tip: Garbage Collection and setting to null

Description: Describes how to aid the garbage collector by setting object references to null.

http://www.javaworld.com/jw-06-1998/jw-06-object-pool.html
Title: Build your own ObjectPool in Java to boost app speed

Author: Thomas E. Davis

Description: Describes how to boost application performance by managing object storage by using object pools.

http://www.javaworld.com/javaworld/jw-11-1999/jw-11-performance.html
Title: Java performance programming, Part 1: Smart object-management saves the day

Author: Dennis M. Sosnoski

Description: Describes how to enhance performance by using primitive types and managing object storage.

http://www.javaworld.com/javaworld/javaqa/1999-08/04-qa-leaks.html
Title: Java memory management

Subtitle: Are memory leaks possible, preventable in Java?

Description: Identifies sources of memory leaks (dangling references), and strategies for locating, preventing them.

http://developer.java.sun.com/developer/TechTips/1997/tt1216.html#tip1
Title: Java Developer’s Connection: Tech Tips December 16, 1997

Subtitle: Performance -- using Object to represent disparate types

Description: Explains how to save memory by exploiting the properties of the Object type.

http://developer.java.sun.com/developer/TechTips/2000/tt0124.html#tip1
Title: Java Developer’s Connection: Tech Tips January 24, 2000

Subtitle: Using finally versus finalize to guarantee quick resource cleanup

Description: This article illustrates the impact of using finally blocks instead of the finally method to do resource reclamation.

6.1.6 Event handling

Events are a communication mechanism that allows components to be notified when something of interest has occurred. The event model of programming is in stark contrast with the polling model where a component must continually check to determine if something of interest has occurred. JavaBeans defines an event handling model that can be used to “wire together” independently developed components and can also be used programmatically.

http://www.javaworld.com/javaworld/jw-08-1996/jw-08-event.html
Title: Java and event handling

Author: Todd Sundsted

Description: This article discusses how events are passed to user interface components, how to create event handlers, and more

http://www.javaworld.com/javaworld/jw-02-2000/jw-02-fast.html
Title: Speed up listener notification.

Author: Robert Hastings

Description: This article discusses how to improve JavaBeans event notification performance.

6.1.7 Java Static Compilers

6.1.7.1 When they do and don’t make sense

Javac and other “traditional” Java compilers process Java source code and produce classfiles – files written to execute on the Java Virtual Machine instruction set architecture. Because of the costs of JVM interpretation and the loss of native platform optimization opportunities (to some extent mitigated by Just In Time compilation in the interpreter), vendors have produced native static Java compilers. These compilers process source code or class files (it varies) and produce either optimized native executables or native object files. There are significant tradeoffs to be assessed when considering the use of native Java compilers. Under some circumstances there can be a substantial performance improvement and easier application deployment. However, there are also issues about loss of portability, of translation fidelity and introduction of latent class loading bugs, and of support for some kinds of applications at all.

· Static compilers make sense for large scale or time sensitive server side applications.

· Makes sense if you want to have a product deployment and installation process similar to the one you have for other programming languages (e.g., deploy and install a single native executable rather than a series of JAR files and class libraries).

· Doesn’t make sense for applications that are short lived or dynamic in nature.

· Doesn’t make sense (now) for end-user graphically oriented code.

· May not make sense if dynamic class loading is used in your application, unless you can also compile at the same time all variant classes that may be loaded.

6.1.7.2 Things to watch out for

· Few if any static compilers support GUI code (Swing, AWT).

· Lag in VM releases with their dynamic counterparts.

· Restricted platform/OS availability.

· Binds you to a single vendor.

· Iterative testing may be required to ensure that all implicit uses of dynamic class loading by code you compiled has been addressed (otherwise a runtime error will be encountered the first time that “hidden” dynamic class loading is attempted). Some vendors provide tools to help identify implicit dynamic class loading, but even there extensive testing and extending the compilation list may be required.

· Building benchmarks that mimic the characteristics of your application can help calibrate the potential speedup for compilation (e.g., math intensive? Memory manipulation intensive? etc.). Compiler speedup is very sensitive to the runtime characteristics of the application.

· Aggressive compiler optimization is very subtle and is very often a source of subtle bugs; extensive testing of your compiled code and a scrutiny of customer references for the vendors you are considering is important for judging translation fidelity.

6.1.8 String Management

http://developer.java.sun.com/developer/TechTips/1999/tt0114.html#tip3
Title: Java Developer’s Connection: Tech Tips, January 15, 1999

Description: Explains how strings are stored in Java, and how you can exploit this knowledge to improve the performance of your application in some circumstances.

http://developer.java.sun.com/developer/TechTips/1998/tt0120.html#tip1
Title: Java Developer’s Connection: Tech Tips, January 20, 1998

Subtitle: String versus StringBuffer.

Description: Illustrates the performance implications of using String’s ‘+’ operator vs. using the StringBuffer class directly.

6.1.9 Java Runtime Class Libraries

http://www.javaworld.com/javaworld/jw-02-2000/jw-02-performance.html
Title: Java performance programming, Part 3: Managing collections”

Author: Dennis M. Sosnoski

Description: Describes how to customize the classic collections classes (Vector and Hashtable) to improve performance.

http://developer.java.sun.com/developer/TechTips/1999/tt0809.html#tip2
Title: Java Developer’s Connection: Tech Tips, August 9, 1999

Subtitle: Using List Collections Efficiently

Description: Explores the possibilities of using different list types to get the most performance out of your code.

http://developer.java.sun.com/developer/TechTips/1998/tt1020.html#tip1
Title: Java Developer’s Connection: Tech Tips August 9, 1998

Subtitle: Improving I/O Performance

Description: Expounds on strategies for enhancing performance.

http://developer.java.sun.com/developer/TechTips/1997/tt1118.html#tip2
Title: Java Developer’s Connection: Tech Tips January 18, 1997

Subtitle: Faster I/O using JDK 1.1 classes.

Description: Describes how to improve the performance of I/O by using BufferedReader classes.

http://www.sun.com/workshop/java/wp-javaio/
Title: JavaTM I/O Performance Tuning

Author: Daniel Lord, Achut Reddy

Description: A whitepaper on how to enhance I/O performance by chaining, by sub-classing standard Java base classes and by profiling.

6.1.10 Java Language Facilities

http://www.javaworld.com/jw-12-1999/jw-12-performance.html
Title: Java performance programming, Part 2: The cost of casting

Author: Dennis M. Sosnoski

Description: Discusses the performance implications of casting.

http://www.cs.cmu.edu/~jch/java/benchmarks.html
Title: Java Microbenchmarks

Author: Jonathan Hardwick

Description: Characterizes the relative performance of different language operations on different Java Runtime Environments.

6.1.11 Miscellaneous

http://www.cs.cmu.edu/~jch/java/optimization.html
Title: Java Optimization

Author: Jonathan Hardwick

Description: A collection of information about enhancing the performance of Java programs.

http://www.cs.cmu.edu/~jch/java/speed.html
Title: Optimizing Java for Speed

Author: Jonathan Hardwick

Description: Lists a number of strategies for optimizing Java code for speed.

http://www.cs.cmu.edu/~jch/java/size.html
Title: Optimizing Java for Size

Author: Jonathan Hardwick

Description: Lists a number of strategies for reducing Java code size.

http://patrick.net/jpt
Topic: Java Performance Tuning

Author: Patrick Killelea

Description: Lists a number of tricks and tips for enhancing Java performance.

http://developer.java.sun.com/developer/technicalArticles/Programming/Performance/index.html
Title: The Experts Talk: Thirteen Great Ways to Increase Java Performance

Author: Kevin Kluge

Description: Lists thirteen strategies for improving Java performance.

http://www.ibm.com/java/education/javahipr/javahipr1.html
Title: Building High-Performance Applications and Servers in Java: An Experiential Study

Author(s): Sandeep K. Singhal, Binh Q. Nguyen, Richard Redpath, Michael Fraenkel, Jimmy Nguyen

Description: A lessons learned paper that lists a number of strategies the developers used to enhance the performance of their application.

http://www-4.ibm.com/software/os/warp/performance/javatip.htm
Title: Java Performance Tuning Tips 1.0

Description: Lists rules of thumb on how to tune the performance of Java applications.

http://java.sun.com/docs/books/jls/html/index.html
Title: The Java Language Specification

Author: James Gosling, Bill Joy, Guy Steele

Description: The authoritative Java Language reference. Documents all of the Java language facilities.

6.2 Exception handling in Java

6.2.1 Background

“Despite gains in programming simplicity, the use of exceptions, particularly those that are automatically propagated, remains fault-prone because they are the least well documented and tested parts of an interface.”
[Cui 1989].

 “Currently, exception handling seems to be one of the most baroque, least understood and documented parts of software design.” [Flav 1984].

It is unfortunately the case that these observations are as true today as when they were written. Published analyses of the causes of software defects frequently single out error handling as a significant problem. For example,

· an analysis of software defects in Hewlett-Packard’s Scientific Instruments Division identified “error checking” as the third most frequent cause of defects;

· a case study of a fault-tolerant switching system showed 2/3 of the system failures due to design problems were in the error handling portion of the system;
· many of the safety-critical level software failures detected in the final system tests for space shuttle avionics were associated with “exception handling and redundancy management”;
· concentration on the nominal or fault-free case has been identified as a major source of software rework costs.

Despite this, few software analysis and design methods explicitly address error handling. Project cost and schedule pressures often result in relatively little attention being paid to the design, implementation, and testing of error handling even for critical systems.

6.2.2 Brief Overview

The Java language provides a mechanism called exceptions to signal an error or unusual condition has occurred. Exceptions are not new to Java (e.g., they are provided in Ada, C++, even PL/I), but the language does provide some rich object oriented aspects for exception handling. One issue that frequently arises in discussing exceptions is: just what is an “error or unusual condition”? As Gosling and Arnold put it: “Deciding which situations are expected and which are not is a fuzzy area. The point is not to abuse exceptions as a way to report expected situations.” [Arnold 1998].

For a good overview of declaring, catching, and throwing exceptions, see:

Lesson: Handling Errors with Exceptions, http://java.sun.com/docs/books/tutorial/essential/exceptions/

There are some recurring patterns of problems using exceptions. Care given in the design and use of exceptions can help reduce exposure to these problems. These patterns fall into six categories:

· Unanticipated propagation

· Invalid termination of propagation

· Propagation from within handlers

· Interaction of exceptions with other aspects of the language

· Violation of abstraction

· Mapping between error code and exceptions

What follows is a brief discussion of guidelines for each category.

6.2.2.1 Unanticipated propagation

When exceptions propagate to the top of the call stack, they cause the program (or thread) to abort execution. Typically, a stack trace and some run time message are printed at termination. It is rarely the case that this is desired behavior in a mission critical application. In cases where error recovery is not feasible, at least some graceful shutdown and perhaps better diagnostics are usually desired. Since the termination can be caused by anything derived from the class Throwable, propagation of Error or RuntimeException objects can still cause unanticipated termination (e.g., ThreadDeath, AWTError, UnknownHostException, ArithmeticException, AWTException). It may be desirable to have a few “fire walls” where Throwable is caught, and appropriate restart or graceful shutdown is performed.

The following code fragment gives an example of stopping all exception propagation and performing a “graceful” (or at least deliberate) shutdown.

public void run(

)

 {

 while(m_keepRunning) {

 try {

 m_thread.setPriority(Thread.MAX_PRIORITY);

 while(pending() > 0) {

 m_event = nextEvent();

 dispatchEvent();

 }

 Thread.yield();

 Thread.sleep(5);

 } catch (Throwable e) {

 // Nothing can be done as a recovery action at this

// point, but graceful shutdown is desirable.

 ExecManager.shutdown ();

 }

 }

 }

6.2.2.2 Invalid termination of propagation

A frequent cause of subtle bugs in deployed systems is the unintended termination of exception propagation without recovery. The typical pattern is to add a print statement in a handler, to let the programmer know that a specific exception has been encountered. These debug statements are left in the deployed system as the extent of the error handling surprisingly often. However, printing a message to the screen does nothing to alter state in the program. Such a message in a deployed system is almost certainly cryptic to the end user at best, and often invisible if standard out is not visible because of various graphics frames. Worse, after printing the message the “debug” statement is typically finished, and often no further exception is propagated. The method returns normally with no indication of failure, and the system continues on, often in an unknown state since no error recovery or reporting was provided to the calling method. This can produce very unpredictable situations. Debugging statements should not be confused with error handling. What is even more often a mistake is the “novocaine strategy” that shows up in some deployed systems source code: ignore the exception all together. The following code fragment illustrates:

for (int i = 0; i < listenerList.size(); i++) {

 try {

 IXXXObjectListener listener = (IXXXObjectListener)

 listenerList.elementAt(i);

 switch(event.getType()) {

 case XXXEventManager.OBJECT_DOWN_EVENT:

 listener.objectDown(event);

 break;

 case XXXEventManager.OBJECT_UP_EVENT:

 listener.objectUp(event);

 break;

 case XXXEventManager.OBJECT_BOX_EVENT:

 listener.objectBox(event);

 break;

 case XXXEventManager.OBJECT_DESELECT_EVENT:

 listener.objectDeselect(event);

 break;

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

After the stack trace is printed (no doubt puzzling the tactical operator if they see it at all), the loop is exited normally. Program execution will continue with the assumption that the events were handled correctly. The consequences of this erroneous assumption are not clear, but this is an example of confusing debugging with error handling.

If an exception is caught, ignoring it may be the right choice, but more often the appropriate handling is to propagate it up the call chain, or restore state to some default setting, or attempt an alternate computation.

6.2.2.3 Propagation from within handlers

It is ironic, but a common oversight in exception handling code is to overlook the possibility of an exception being thrown while performing exception handling. Code in the catch clause of a try block can throw exceptions just as readily as any other code, yet the use of nested try blocks (to handle these subsequent exceptions) is often ignored. In some cases, if exception handling code is terminated prematurely because of subsequent exception propagation, the finally clause can be used to ensure cleanup. Consider the following fragment, where the design calls for a null file descriptor:

 } catch (java.io.IOException e) {

 // IO operation failed, clean up if the

 // file descriptor is not null (i.e., if it was open)

 if (in != null) {

 try {// Attempt to close the open file descriptor

 // but this may in turn throw an exception

 in.close();

 } catch (java.io.IOException e) {

 System.err.println("error, tried to close file descriptor");

 // or something more useful for user or during testing...

 }

// in this case, nothing more can be done, flag the file descriptor

 // variable as null.

 in = null;}

 }

6.2.2.4 Violation of abstraction

It is generally a bad idea explicitly to throw a predefined Java exception that typically is thrown implicitly. This can be very confusing for the person trying to debug the application, since some assumptions about what caused the exception to be thrown may not be valid. For example, an application may check a user request to access certain records based on the user identity or role. If this request were determined to be invalid because it violated some application specified policy, a developer might simply throw java.lang.IllegalAccessException. The exception name sounds reasonably descriptive of the problem the developer has detected. However, this is a predefined exception that is associated with specific reasons for being thrown:

public class IllegalAccessException

extends Exception

Thrown when an application tries to load in a class through its string name using:

 The forName method in class Class.

 The findSystemClass method in class ClassLoader.

 The loadClass method in class ClassLoader.

but the currently executing method does not have access to the definition of the specified class, because the class is not public and in another package.

An instance of this class can also be thrown when an application tries to create an instance of a class using the newInstance method in class Class, but the current method does not have access to the appropriate zero-argument constructor.

As a result, a subsequent developer using this code and catching IllegalAccessException may be confused about the real origin and cause of the exception. In general, application-specific exception conditions should throw application-specific exceptions.

6.2.2.5 Interaction of exceptions with other aspects of the language

There are a number of subtle ways in which various aspects of a language design interact – this is one of the reasons language design is so difficult to “get right”. Several examples include exceptions in Java. Some examples to be aware of:

1. Initializers and static initialization code blocks can not throw checked exceptions (i.e., derived from Exception rather than from Throwable, Error, or RunTimeException). They therefore can not call a method that potentially throws a checked exception either.

2. Finalization (and execution of the finalize method if provided) has some unusual rules with respect to exceptions. In particular, while a finalize method can catch and handle exceptions, if it does propagate exceptions they are ignored.

3. Anonymous exceptions can be created if the interaction between static scoping and dynamic propagation is not carefully treated. This can cause confusion at compile time or at run time. Consider the following fragments:

package mypackage;

class MyPackagedException extends Exception { }

public class UnnamedExceptionProp {

 public void method1 () throws Exception {

 throw new MyPackagedException();}} // Line #9

import mypackage.*;

public class UnnamedExceptionMain {

 public static void main (String args[]) {

 UnnamedExceptionProp u = new UnnamedExceptionProp();

 try {u.method1(); // Line #8

 } catch (Exception e) { e.printStackTrace();} }}

If “Exception” in the catch clause is replaced with MyPackagedException the compiler will complain about no visibility of the declaration.

This produces at run time:

java UnnamedExceptionMain

mypackage.MyPackagedException

 at mypackage.UnnamedExceptionProp.method1

 (UnnamedExceptionProp.java:9)

 at UnnamedExceptionMain.main(UnnamedExceptionMain.java:8)
6.2.2.6 Mapping between error code and exceptions

There are often interfaces between the use of return codes (e.g., from C/C++ portions of a system) and the throwing of exceptions. This is typically a mapping of specific return code values to specific exceptions. A common mistake in implementing this is to fail to completely cover the range of return code values. The assumption should be failure (throwing some general exception that indicates the operation failed), and an explicit test for success (e.g., a specific set of positive return codes) should be made. If this is not done, an unexpected return code indicating failure may not be handled, and mistakenly mapped to success (i.e., no exception thrown). This has caused some very difficult to debug errors in deployed code.

A second mistake made in mapping return codes to exceptions is to ignore the granularity of diagnosis the return codes support. If various specific return codes are associated with specific failure conditions (e.g., file not found, no permission, or illegal name), this information may useful to map to a specific exception to provide that level of detail when thrown. Often all indications of specific causes are lost, and all indications of failure are mapped to one general “it didn’t work” exception.

.

7 COE Specific Development/Run-time Guidance

<** This is a placeholder for a section that should describe supplementary COE specific development and runtime guidance for Java developers. It may include specifics about JRE versions supported by COE version; environment variable settings in COE environment (for classpath, etc.); using Java Plug-in for COE; how to set up classpaths, EJB deployment, and any Java specific segmentation guidelines and issues. Information in this section should be kept current via our COE web site.**>

8 Summary of Guidelines

8.1 Architecture

Standards

· COE developers should use the defacto standard Java APIs, maintained by Sun Microsystems and developed by Sun, Oracle, IBM, and other organizations and via the Java Community Process. (2.1)
N-Tiered Application Design

· Although there are some exceptions, in general application designers should avoid monolithic (single tier) designs. (2.4.2)

· Two-tiered designs are usually not appropriate for COE applications and developers should avoid this design when possible. (2.4.2)

· N-tiered designs are recommended for COE applications. (2.4.3)
· Tiers which do not add value to the flow of data should be removed or redesigned. (2.4.4.1)

· Avoid indirect coupling of user interface and functional logic. To avoid this pitfall, no module or component should ever implement both the functional and the user interface logic for the application. These functions should be kept strictly separate. The user interface logic should access the functional logic only through well-defined interfaces. (2.4.4.2)

· Avoid premature reduction of data. In most cases, data should flow through the system in as generic a form as possible and only be converted to a displayable format by the user interface logic. (2.4.4.3)
RMI.

· RMI objects should extend UnicastRemoteObject
, which provides the proper semantic implementations of hashCode, equals and toString methods with respect to all RMI objects. This may not be possible in the case where the class is already subclassing a superclass. In those cases, pass a reference of the remote object to the exportObject() method of the UnicastRemoteObject class. (2.5.2.1)

· Client applications should use Sun’s JNDI RMI service provider implementation [JNDI 1999] for performing RMI lookups on remote. (2.5.2.1.1)
RMI vs. CORBA

· When possible, final designs should incorporate approved COE CORBA 2.3 (or higher) Internet Inter-ORB Protocol (IIOP) compliant products. RMI should be used in cases where RMI provides features lacking in CORBA but required by the application. In situations where these capabilities are required, applications should utilize RMI/IIOP communications. (2.5.2.3)

8.2 General

Naming Conventions

· For package names, refer to section 8.2.2 of the I&RTS [I&RTS 1999] for guidance. (3.1.1)

· Class and interface names should be prefixed with the mixed case segment abbreviation, for example, “JmvCircleMode”. (3.1.2)

JNI

· The DII COE strongly discourages the use of JNI since it usually breaks the portability provided by Java. (3.2)

The following may be acceptable reasons to use JNI within the DII:

· Performance critical code needs to be executed in another language.

· The Java libraries do not provide the functionality needed for an application.

· Libraries have already been written in another language and need to be used in your application.

· You have a requirement to use a legacy application/module, written in another language, like C or C++.

When using JNI, the JNI code should be hidden behind a pure Java interface, so the JNI implementation can be torn out later and replaced with pure Java without breaking clients.
JavaBeans – Properties (3.3.2.2)
· All JavaBean properties should be labeled private to prevent direct public access.

· All JavaBean properties should be accessed by appropriate accessor methods in the form of standard notation getter/setter methods. For example, a property called name would be accessed through “setName(String name)” and “getName().”

· JavaBean properties should be documented using JavaDoc notation within the source code.

JavaBeans – Event Listener Interfaces (3.3.2.5)

· Event listener interface methods are prefixed by “add” or “remove” followed by the event listener interface name.

· Event listener interfaces extend java.util.EventListener and end with the prefix “Listener”. For example, WindowListener, KeyListener, ComponentListener, etc.

JavaBeans—Custom Events

· Custom event objects should end with the suffix “Event” – e.g., ActionEvent, MouseEvent, DataChangedEvent, etc. (3.3.2.6)

Partitioning a Development Effort into Beans

· Minimize the interdependence/coupling of resulting beans. Developers should use events and RMI for all Java-to-Java communication. (3.3.3.1)

· Ideally, a bean should be developed by exactly one developer or team. (3.3.3.2)

· A good first cut at a partition into beans will allocate each unique function to a bean. (3.3.3.3)

· Use tiers to guide the partition of a system. A bean should not cross a tier boundary. (3.3.3.4)

Bean Quality.

· Anyone developing reusable JavaBean components (which is encouraged), should use BeanLint to validate and warn of any potential problem. (3.3.4)

Advanced JavaBean Integration

· When using Java 2, all COE-based systems using JavaBeans should apply the BeanContext API to their design. (3.3.5.1)
(Non GUI) Unit Testing.

· Developers should consider the approach of code a little, test a little, code a little, test a little. When you’ve determined a class’s responsibility and function, consider first writing a test to validate it meets requirements. Then, write the code and run the test. (3.4.4)

· Developers are strongly encouraged to use JUnit, Jtest or other comparable free or commercial tools to support unit testing of their non GUI,”business” classes. (3.4.6)
Javadoc

· Javadoc should be used to describe the specifications of the COE code to be used by mission application developers. (3.6.1)

· All delivered COE Components should contain JavaDoc comments. Use the Javadoc 1.2 tool that comes with JDK 1.2 (Java 2), not the one that comes with JDK 1.1.x. (3.6.1.2.1)

· In addition to embedding documents in source files for classes, interfaces, methods, and fields, developers should also use package comment files, and overview comment files. (3.6.1.2.2)

· Each package should have its own documentation comment. Developers should include in this comment any documentation that applies to the entire package. When writing the comment, you should make the first sentence a summary about the package, and not put a title or any other text between <body> and the first sentence. (3.6.1.2.2.1)

· Each application or set of packages that you are documenting should have its own overview documentation comment, kept in its own “source” file, that Javadoc will merge into the overview page that it generates. Developers should include a conceptual overview description that applies to the entire application or set of packages. (3.6.1.2.2.2)

· In general, source code Javadoc comments should follow the guidelines described in “How to Write Doc Comments for Javadoc”. (3.6.1.2.3)

· (3.6.1.2.3.1) Included comments for classes/interfaces should describe the purpose of the class/interface. Optionally, describe invariants, usage instructions, and/or usage examples. These tags should be included in this order:

· @author

· @version

· (3.6.1.2.3.2) Included comments for methods should provide a brief description of method’s purpose. These tags should be included in this order:

· @param (required for every parameter). List in argument declaration order.

· @return (not required for constructors nor methods that return void).

· @throws (list alphabetically by exception names).

· (3.6.1.2.3.3) Included comments for class instance or static variables (fields) should describe the purpose and constraints.

Other Design Documentation

· Design documentation should include, at a minimum, class diagrams, use cases, and interaction diagrams (either sequence and/or collaboration) expressed in UML notation and code usage examples. (3.6.2)

· (3.6.2.6) The documentation should be driven by the key, illustrative use cases. Note that for any software there could be many use cases. The documentation should include just that handful of use cases that can illustrate essential concepts. For each use case, include:

· The corresponding subset of the class diagram.

· The interaction diagram showing how those classes collaborate to accomplish the use case

· Code examples, snippets showing how the developer could implement the use case.
JREs

· All new Java development efforts should use Java 2. JRE 1.1 will be available primarily for compatibility with older Java applications.

· The use and packaging of JREs, other than those provided by the COE, is strongly discouraged.

8.3 Client Side Development

· These guidelines strongly encourage the adoption of the JFC, the Swing components in particular, for all Java-based GUI DII COE software. (4.1)

· Developers should avoid using AFC for Java-based application targeted for the DII COE . (4.1.1)

· When developing GUI-based applications for the DII COE, applications should adopt the native L&F of the deployment platform. Users should not be provided with a selectable choice of L&F. (4.1.2)

· Swing 1.03 should not be used for Java 2 applications, as it is minimally supported by Sun for Java 2. (4.1.3)

· Developers are also encouraged to use Swing 1.1 (or higher) classes for JRE 1.1.x applications. (4.1.3)

8.4 Server Side Development

Java 2 Enterprise Edition

· Enterprise JavaBeans is the recommended component framework for data access and business logic in Java based N tier COE applications. (5.1.2.2)

· JavaServer Pages should be used for implementing any HTML based Web applications. Java Servlets may also be used in those cases when the application is not generating HTML output, but instead is used to generate some other MIME type. (5.1.2.3.1)

· CGI scripts should not be used, except in cases where legacy CGI functionality is already deployed and must be supported. (5.1.2.3.3)

· All COE Servlet components should be written as JavaBeans. (5.1.2.3.4)

· Neither Servlets nor JSPs should be used to implement any fundamental business logic. Such logic should be implemented in an EJB and accessed by the presentation logic tier. (5.1.2.3.5)

· The use of J2EE compliant application servers is recommended for Java-based multi-tier COE applications. (5.1.3)

· Since vendor specific extensions to application servers sacrifice portability, they should not be used without carefully examining open alternatives. (5.1.3.1)

· When using J2EE, runtime and deployment time attributes for EJBs, Servlets, JSPs and client components should be used for all deployment and run-time definable data. (5.1.4)

Legacy Application Integration

· Legacy applications should be wrapped using CORBA (preferred), RMI, or JNI. (5.2.1.1)

· Generally, MOM should be used to access legacy batch and mainframe applications. (5.2.1.3)

· For a large legacy application, it may be useful to provide more than one wrapper interface. (5.2.2.1)

· Minimize changes to legacy applications. It is usually preferable to wrap a legacy system, then gradually replace parts of it with new components (multi-interface wrappers are helpful), and then eventually retire the legacy system. (5.2.2.2)

Security (5.3)

At minimum, your server should require that all mobile server code be signed by a trusted party or parties. Your site policy should forbid importing unsigned or untrusted code. If your server is running on the Java 2 platform, you should define a Java Protection Domain for each source of authorized mobile code and allot to that domain only those privileges needed by that code to do its job. Developers are urged to refer to the appropriate DoD Security policy (e.g. [DoD1 2000]) and their appropriate program office for specific guidance which might supercede this general guidance.

8.5 Performance and Exception Handling

· Developers should establish measurable system performance requirements for specific repeatable scenarios, on specific platforms, before undertaking systematic performance improvement. (6)
Multi-threading

· When looking to threads for performance gain, developers should look for a natural decomposition of processes. (6.1.2)
Introspection

· Developers should minimize using introspection in time sensitive portions of the application. (6.1.3)

Dynamic Class Loading
Generally, classes should be loaded as needed vs. ahead of time, because loading a class triggers the loading of any of its ancestor classes and related interfaces. However, frequently used classes can be preemptively loaded ahead of time to improve the perceived responsiveness of the application. This is a common technique for improving the responsiveness of graphical interfaces. (6.1.4)

Event Handling

· Developers are encouraged to read the articles on event handling and performance cited in 6.1.6.

Static Compilers

· There are significant tradeoffs to be assessed when considering the use of native Java compilers. Under some circumstances there can be a substantial performance improvement and easier application deployment. However, there are also issues about loss of portability, of translation fidelity and introduction of latent class loading bugs, and of support for some kinds of applications at all. Refer to section 6 for detailed discussion. (6.1.7)
Exception Handling

· Developers should avoid unanticipated propagation. In cases where error recovery is not feasible, developers should provide at least some graceful shutdown and perhaps better diagnostics. (6.2.2.1)
· Developers should avoid invalid termination of propagation without recovery. The typical pattern is to add a print statement in a handler, to let the programmer know that a specific exception has been encountered. Debugging statements should not be confused with error handling. What is even more often a mistake is the “novocaine strategy” that shows up in some deployed systems source code: ignore the exception all together. (6.2.2.2)
· Developers should beware a common oversight in exception handling code - overlooking the possibility of an exception being thrown while performing exception handling (6.2.2.3)

· It is generally a bad idea to explicitly throw a predefined Java exception that typically is thrown implicitly. (6.2.2.4)

· There are often interfaces between the use of return codes (e.g., from C/C++ portions of a system) and the throwing of exceptions. This is typically a mapping of specific return code values to specific exceptions. Developers should avoid the common mistake in implementing this of failing to completely cover the range of return code values. The assumption should be failure (throwing some general exception that indicates the operation failed), and an explicit test for success (e.g., a specific set of positive return codes) should be made. (6.2.2.6)

9 References

[Ambler 1999]
Scott Ambler, “AmbySoft Inc. Coding Standards for Java,” http://www.ambysoft.com/javaCodingStandards.html, 1999.

[Arnold 1998]

Ken Arnold and James Gosling, “The Java Programming Language”, Addison Wesley, 1998.

[Beck 1998]

Kent Beck and Erich Gamma, “Test Infected: Programmers Love Writing Tests,” Java Report, July 1998.

[Beck 1999a]

Kent Beck and Erich Gamma, “Junit - A Cook’s Tour,” Java Report, May 1999.

[Beck 1999b]

Kent Beck and Erich Gamma, JUnit, ftp://www.armaties.com/D/home/armaties/ftp/TestingFramework/JUnit/

[Betanov 1997]
Cemil Betanov, “Getting to Your Mainframe Data,” Distributed Computing, 11-12/97, p. 26-30.

[Bodeau 1998]

Deborah Bodeau, Charles Schmidt, Vipin Swarup, and F. Javier Thayer, “Distributed Object Computing (DOC) Security: Paradigms and Strategies,” MITRE Document, November 1998.

[Cain 1996]

Adam Cain, “Security, Authentication and Privacy on the Web.” 5th International WWW Conference, http://www5conf.inria.fr/ fich_html/slides/tutorials/T1/background/, May 1996.

[Cattell 1997]

R. G. G. Cattell and Douglas Barry, eds., “The Object Database Standard: ODMG 2.0,” Morgan Kaufmann, 1997.

[COSS 1994]

“Common Object Services Specification, Volume I,” Object Management Group, Inc., Framingham, MA, March 1994.

[Cui 1989]

Cui, Q., “Data-Oriented Exception Handling”, Ph.D. Thesis, University of Maryland, 1989
[DISA 1998],

 “Recommendations for Using DCE, DCOM, and CORBA Middleware (C1),” DISA, http://dii-sw.ncr.disa.mil/coe/topics/atd/
[DoD 1 2000]

“Department of Defense (DoD) Mobile Code Technology Policy and Guidance”, currently in draft.

[DoD 2 2000]

“Configuration Guidance for Client Workstations, Applciations, and Firewalls To Implement the DoD Memorandum on Use of Mobile Code”, currently in draft.

[Eckel 1999]

Bruce Eckel, “Thinking in Java,” Prentice Hall, http://www.EckelObjects.com/javabook.html, 1999.

[Edwards 1997]
Jeri Edwards with Deborah DeVoe, “3-Tier Client/Server At Work,” John Wiley & Sons, 1997.

[EJB 1999]

JavaSoft, “Enterprise JavaBeans,” http://www.javasoft.com/products/ejb/, 1999.

[Flav]

Cristian, Flaviu, “Correct and Robust Programs,” IEEE Transactions on Software Engineering, Vol SE-10, no. 2 (March 1984), 163-174.
[Fowler 1997]

Martin Fowler and Kendall Scott, “UML Distilled,” Addison-Wesley, 1997.

[GA Tech 1999]
Criteria for Testing Exception-Handling Constructs in Java Programs

http://www.cc.gatech.edu/~sinha/abstracts/icsm99.html.

[IBM 1998]

Java Exception Handling

http://www-4.ibm.com/software/developer/library/javaexc/javaexc.html

[I&RTS 1999]

DISA, “Integration and Runtime Specification,” Version 3.1, 1999.

[J2EE Blueprint 2000] JavaSoft, http://java.sun.com/j2ee/blueprints/, 2000.

[Jacobson 1999]
Ivar Jacobson, Grady Booch, and James Rumbaugh, “The Unified Software Development Process,” Addison-Wesley, 1999.

[JavaBeans 1997]
JavaSoft, “JavaBeansTM,” version 1.01, 1997.

[Javadoc 1999]
JavaSoft, “Javadoc home page,” http://www.javasoft.com/products/jdk/javadoc/, 1999.

[Javadoc 1999b]
JavaSoft, “How to Write Doc Comments for Javadoc,” http://www.javasoft.com/products/jdk/javadoc/writingdoccomments.html, 1999.

[Javadoc 1999c]
JavaSoft, “What’s New in Javadoc 1.2,” http://www.javasoft.com/products/jdk/1.2/docs/tooldocs/javadoc/whatsnew.html, 1999.

[Javadoc 1999d]
JavaSoft, “Javadoc Tips (FAQ),” http://www.javasoft.com/products/jdk/javadoc/faq.html, 1999.

[Javadoc 1999e]
JavaSoft, “Javadoc tool reference page,” http://www.javasoft.com/products/jdk/1.2/docs/tooldocs/win32/javadoc.html, 1999.

[JavaReport 1998]
Multithreaded Exception Handling in Java, http://archive.javareport.com/9808/html/from_pages/ftp_feature.shtml
[JavaSoft 1999]
JavaSoft, “JavaTM Security,” 1999.

[JaVision 1999]
Object Insight, “JaVision,” http://www.object-insight.com/, 1999.

[JDBC 1998]

JavaSoft, “Java DataBase Connectivity (JDBC) 2.0,” http://www.javasoft.com/products/jdbc/, 1998.

[JMS 1998]

JavaSoft, “JavaTM Message Service,” version 1.0.1, 1998, http://splash.javasoft.com/products/jms/.

[JNDI 1999]

JavaSoft, “Java Naming and Directory Interface (JNDI),” http://www.javasoft.com/products/jndi/, 1999.

[Johnson 1998]
Mark Johnson, “BeanLint: A JavaBeans Troubleshooting Tool, Part 1,” JavaWorld, December 1998.

[Johnson 1999]
Mark Johnson, “BeanLint: A JavaBeans Troubleshooting Tool, Part 2,” JavaWorld, January 1999.

[Kara 1999]

Dan Kara, “The Four Faces of JDBC,” Component Strategies, February 1999, p. 72.

[Kern 1978]

Brian W. Kernighan & P.J. Plauger, The Elements of Programming Style, Second Edition, McGraw-Hill, 1978. ISBN 0-07-034207-5.

[Lea 1999]

Doug Lea, “Draft Java Coding Standard, 1999.

[Monson-Haefel 2000] Richard Monson-Haefel, “Enterprise JavaBeans, O’Reilly, 2000.

[OMG 1999]

The Object Management Group, 1999.

[Orfali 1998]

Robert Orfali, Dan Harkey, “Programming with Java and CORBA,” 2nd Ed.,Wiley, 1998

[ORBOS 1999]
OMG ORBOS, “CORBA Components,” http://www.omg.org/cgi-bin/doc?orbos/99-02-05, March 1999.

[Proc 1998]

Proceedings Of The First International Workshop On Software And Performance, October 12 - 16, 1998, Santa Fe, NM (available at http://www.acm.org/pubs/contents/proceedings/metrics/287318/).

[RMI 1999]

JavaSoft, “Java Remote Method Invocation (RMI),” http://www.javasoft.com/products/jdk/rmi/, 1999.

[Rosenfeld 1998]
Louis Rosenfeld and Peter Morville, “Information Architecture for the World Wide Web,” O’Reilly, 1998.

[Rumbaugh 1991]
James Rumbaugh et al., “Object-Oriented Modeling and Design,” Prentice Hall, 1991.

[Schemers 1998]
Roland Schemers III, “Developer’s Guide to New Security Features in the New Version of the JDKTM Platform,” JavaOne, March 1998.

[SoftModeler/Business 1999] Softera, “SoftModeler/Business,” http://www.softera.com. 1999

[Sun 1999]

Sun Microsystems, “Java Code Conventions,” revised April 1999.

[TAFIM 1996]
U.S. Department of Defense, Technical Architecture Framework for Information Management (TAFIM) v3.0, http://www-library.itsi.disa.mil/tafim/tafim3.0/pages/tafim.htm, April 1996.

[Together/J 1999]
Object International, “Together/J,” http://www.togetherj.com, 1999.

[UI 1999]

User Interface Specifications for the Defense Information Infrastructure (DII), Version 4.0, 1999.

[Voyager 1999]
ObjectSpace, “Voyager 3.0,” http://www.objectspace.com/, 1999.

10 Glossary

AFC
Application Foundation Classes

API
Application Programming Interface
AWT
Abstract Windowing Toolkit

BMP
Bean-managed Persistence
C4I
Command, Control, Communications, Computers, & Intelligence
CGI
Common Gateway Interface

CMP
Container-managed Persistence

COE
Common Operating Environment
COP
Common Operation Picture

CORBA
Common Object Request Broker Architecture

COTS
Commercial Off-the-Shelf

DCE
Distributed Computing Environment
DCOM
Distributed Component Object Model

DII
Defense Information Infrastructure

EJB
Enterprise JavaBeans

GCCS
Global Command and Control System
GUI
Graphical User Interface

HTML
Hyper Text Markup Language

I&RTS
Integration and Runtime Specification

ICSF
Integrated C4I Systems Framework

IIOP
Internet Inter-ORB Protocol

JDBC
Java DataBase Connectivity

JDK
Java Development Kit
JFC
Java Foundation Classes

JMS
Java Message Service

JNDI
Java Naming and Directory Service

JNI
Java Native Interface

JIT
Just in Time

JRE
Java Runtime Environment

JSP
Java Server Pages

JVM
Java Virtual Machine

L&F
Look and Feel

MA
Mission Application
MOM
Message-oriented Middleware

OMG
Object Management Group

pp
Participation period
RDBMS
Relational DataBase Management System

RMI
Remote Method Invocation
SEI
Software Engineering Institute

SQL
Structured Query Language

TAFIM
Technical Architecture for Information Management

TBD
To Be Done

TBMCS
Theater Battle Management Core System

UI
User Interface

URL
Uniform Resource Locator

XML
Extensible Markup Language

WORA
Write once, run anywhere

WWW
World Wide Web

� With continued innovations by Sun and other companies, it is expected that future versions of Java will be comparable in performance to a language like C++. Developers should also keep in mind that system performance often has more to do with design and implementation than language.

� Readers should not get hung up over how to assign a number to N. Different developers might count the layers differently.

� JavaDocs for UnicastRemoteObject say, “Objects that require remote behavior should extend RemoteObject, typically via UnicastRemoteObject.” JavaDocs for the Remote Interface read: “Implementation classes can implement any number of remote interfaces and can extend other remote implementation classes. RMI provides convenience classes that remote object implementations can extend which facilitate remote object creation. These include…UnicastRemoteObject”

� refer to the following web page and indicate COE release of interest to determine available JRE’s: http://dod-ead.mont.disa.mil/qry/internet/release/DII_Target_rel.taf?function=form

� There are currently two competing server side component technologies – J2EE/EJB and Microsoft’s MTS. Only J2EE/EJB offers cross platform support.

� According to the CERT, over ½ of all security problems are caused by buffer overflows (the most common case) and bugs in memory management. Java virtually eliminates the source of these bugs.

� JavaDocs for UnicastRemoteObject say, “Objects that require remote behavior should extend RemoteObject, typically via UnicastRemoteObject.” JavaDocs for the Remote Interface read: “Implementation classes can implement any number of remote interfaces and can extend other remote implementation classes. RMI provides convenience classes that remote object implementations can extend which facilitate remote object creation. These include…UnicastRemoteObject”

PAGE
72

_990363365.ppt

User Presentation

(Client)

Mid-tier

Data

RDBMS

Flat File

Legacy

System

Application Server

HTTP Server

Standalone

Application

HTML

Browser

Browser

Applet

_1019376880.doc

skeleton

proxy/

stub

message

traffic

Java VM

Java VM

Java Object

_1020505084.doc

User

User

User

Business

Object

Tier

Logic Container (Transaction

Mgr) Tier

Data

Interface

Tier

Data Repository

Tier

network

_1019376531.ppt

Data Repository

Data Interface

Logic Container

Functional (Business) Logic

User Interface Logic

User Interface Engine

User Interface

Logic

Data

Click to add notes

_990513663.ppt

Data Repository

Data Interface

Logic Container

Business Logic

User Interface Logic

User Interface Engine

Interface

Logic

Data

Browser

Applet

Applica-

tion

JSP

Servlet

EJB Server

Web Server

Servlets

EJBs

JDBC

OO to Rel

Mapping tools

OODBMS

API

Legacy

Protocols

RDBMS

ODBMS

Legacy

Click to add notes

_971168338

