DRAFT

[image: image1.png]

[image: image3.png]

[image: image2.png]

Appendix LPC

 Linux Platform Compliance (LPC) Criteria

 26 September 2002

 DRAFT

 The following text identifies specific criteria that must be satisfied for

 Linux Platform Compliance Criteria (LPC).

31. COE Integration and Run-Time Specification (I&RTS) Compliance Criteria

32. Commercial Specification Compliance Criteria

32.1 Application Program Interface

42.2 Human Computer Interface

42.2.1 Graphical User Interface Desktop

62.3 Communications Service Interface

72.4 JAVA Support

73. Government Supplied Kernel Source (GSKS) Code Compliance Criteria

73.1 Print Services

83.2 System Management Services

83.3 Accounts & Profile Manager (APM)

83.4. Documentation

93.5. Segment Installer

93.6. COE Run-Time Tools

103.7. COE Developers Tools

113.8. COE Application Programmer Interfaces (APIs)

144. Security Compliance Criteria

144.1 Security Evaluation

144.2 Security Configuration

155. Interoperability Demonstration Criteria

155.1 TCP/IP “Ping” Interoperability

155.2 Domain Name Service (DNS) Interoperability

155.3 File Transfer Protocol (FTP) Interoperability

155.4. Network File System (NFS) Interoperability

155.5 Electronic Mail Interoperability

165.6 World Wide Web (WWW) Interoperability

1. COE Integration and Run-Time Specification (I&RTS) Compliance Criteria

This document shall comply with the kernel related I&RTS requirements applicable to the 8 Compliance Levels (I&RTS 4.2, Chapter 2). These requirements include all platform specific requirements in the document, with emphasis on those identified in the I&RTS Appendix B checklist.
2. Commercial Specification Compliance Criteria

Linux Platform Compliance (LPC) requires the candidate platform implementation to be in compliance with specifications in the following paragraphs. At the time of publication, the versions indicated were valid. All standards are subject to revision, and parties of interest are encouraged to investigate the applicability of the most recent editions of the standards listed below. However, the document criteria include compliance only to the specific versions listed below.

2.1 Application Program Interface

The Candidate Platform implementation shall be in compliance with the following Application Programmer Interface (API) specifications. Most of the API standards listed below (minus the Motif 2.1 requirements) have been absorbed into the LSB. The extended functionality LSB provided is of substantial benefit to the government, since it promises higher level of compliance, and lowers the barrier for competition allowing more vendors to participate. Therefore, DISA will accept LSB compliance as a suitable alternative to many of the disparate specifications listed below. Note: Wherever alternate specifications are called out in the LSB specification, the international standards will take precedence.

2.1.1 Operating System API

The following standards are required:

· ISO/IEC 9945-1: 2001, Information Technology - Portable Operating System Interface for Computer Environments (POSIX) - Part 1: System Application Program Interface (API) [C language]*

NOTE: The POSIX standard identifies many options. Linux Platform Compliance (LPC) only requires the minimum core POSIX function, and none of the options. The resulting function is similar to that profiled by FIPS PUB 151-2: 1994.
We may accept the following in lieu of 9945-1

· LSB 1.2, Section IV, Base Libraries

NOTE: See Section IV, chapter 11 of the Generic LSB Specification and Section V, Chapter 16 in one of the platform specific LSB Architecture Specification.

2.1.2 Communications Service API

· IEEE 1003.1g: 1997 6.6, POSIX - Part 1: System Application Program Interface (API) Amendment 2: Protocol Independent Interfaces (Sockets) [C Language]*, Sockets portion only

Or

· LSB 1.2, Section IV, Base Libraries

NOTE: See Section IV, Chapter 11 of the Generic LSB Specification. See also Section V, Chapter 16, Table 16-12 of the IA32 Architecture Specification.

 2.1.3 Human Computer Interaction API

· C507 - X-Window System Protocol

· C508, Window Management (X11R5 or later): Xlib - C Language Binding, X/Open CAE Specification, April 1995.

· C509, Window Management (X11R5 or later): X Toolkit Intrinsics, X/Open CAE Specification, April 1995.

· C510, Window Management (X11R5 or later): File Format & Application Conventions, X/Open CAE Specification, April 1995.

· M213: Motif 2.1 - Programmer's Guide, ISBN 1-85912-134-9, October 1997

Or

· LSB 1.2, Section VI, Graphics Libraries
NOTE: See Section VI, Chapter 13 of the Generic LSB Specification

· Open Motif 2.1

NOTE: The reference to C Language is part of the formal title of these standards. It denotes the language used to define the standard.

2.2 Human-Computer Interface (HCI)

2.2.1 Graphical User Interface

2.2.1.1 Desktop

The Candidate Platform shall provide a desktop that complies with the following specifications:

· MO27: CDE 2.1/Motif 2.1 - Style Guide and Glossary, ISBN 1-85912-104-7, October 1997.

Note: In light of industry announcements regarding migration to GNOME, we are considering the following as future desktop guidance in lieu of CDE/Motif:

· GNOME 1.4 or later

Note: The initial release of v1.0 of the GNOME Human Interface Guidelines has been produced by the GNOME Usability Project and is available at

http://developer.gnome.org/projects/gup/hig/draft_hig/.
2.2.1.2 Application Style

The Candidate Platform shall support an application style that complies with the following specifications:

· MO27: CDE 2.1/Motif 2.1 - Style Guide and Glossary, ISBN 1-85912-104-7, October 1997.

· MO28: CDE 2.1/Motif 2.1 - Style Guide Certification Checklist, ISBN 1-85912-109-8, October 1997.

· M029: CDE 2.1/Motif 2.1 – Style Guide Reference, ISBN 1-85912-114-4, October 1997.

· User Interface Specifications for the Defense Information Infrastructure (DII), Version 4.0, CM Reference 27985, October 1999. https://dod-ead.mont.disa.mil/web/zip/uis.zip
Note: According to the Motif Zone web site (www.motifzone.net), Open Motif complies with the Motif specifications.

Note: In light of industry announcements regarding migration to GNOME, we are considering the following as future desktop guidance in lieu of CDE/Motif:

· GNOME 1.4 or later

Note: The initial release of v1.0 of the GNOME Human Interface Guidelines has been produced by the GNOME Usability Project and is available at

http://developer.gnome.org/projects/gup/hig/draft_hig/.
2.2.2 Command Line Interface

The Candidate Platform shall provide a command line interface that complies with the following specifications:

· ISO 9945-2: 2001, Information Technology – Portable Operating System Interface for Computer Environments (POSIX) - Part 2: Shell and Utilities
Note: The POSIX standard identifies many options. LPC only requires the minimum core POSIX function and none of the options. The resulting function is similar to that profiled by FIPS PUB 189: 1994.
We may accept the following in lieu of the POSIX specification:

· LSB v1.2, Section IX, Standard Shell
2.3 Communications Service Interface

The Candidate Platform implementation shall be in compliance with the following Communications Service Interface specifications
· IETF Standard 3/RFC-1122/RFC-1123, Host Requirements, October 1989.

· IETF Standard 7/RFC-793, Transmission Control Protocol, 1 September 1981. In addition, TCP shall implement the PUSH flag and the Nagle Algorithm, as defined in IETF Standard 3.

· RFC 2001, TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery Algorithms, January 24, 1997.

· IETF Standard 6/RFC-768, User Datagram Protocol, 28 August 1980.

· IETF Standard 5/ RFC-791/RFC-950/RFC-919/RFC-922/RFC-792/RFC-1112, Internet Protocol, 1 September 1981. In addition, all implementations of IP must pass received Type-of-Service (TOS) values up to the transport layer as defined in IETF Standard 3.

· IETF Standard 13/RFC-1034/RFC-1035, Domain Name System, 1 November 1987.

· IETF Standard 9/RFC-959, File Transfer Protocol, 1 October 1985, with the following FTP commands mandated for reception: Store unique (STOU) and Abort (ABOR), and Passive (PASV).

· IETF Standard 8/RFC-854/RFC-855, TELNET Protocol, 1 May 1983.

· IETF Standard 15/RFC-1157, Simple Network Management Protocol (SNMP), 10 May 1990.

· IETF Standard/RFC-2616 (v1.1) June 1999 (http)
· HTML (4.0) Specification 24 April 1998

· IAB Standard 16/ RFC-1155, RFC-1212, Structure of Management Information (SNMPv1), May 1990.

· IAB Standard 17/RFC-1213, Management Information Base-II (MIB), 26 March 1991.

· IETF RFC 1757, Remote Network Monitoring Management Information Base (RMON Version 1), 10 February 1995.

· RFC-951, Bootstrap Protocol, September 1, 1985.

· RFC-2132, DHCP Options and BOOTP Vendor Extensions, March 1997.

· RFC-2131, Dynamic Host Configuration Protocol, March 1997.

· RFC-1542, Clarifications and Extensions for the Bootstrap Protocol, October 27, 1993.

· RFC-1305, Network Time Protocol (Version3) Specification, Implementation, and Analysis, April 9, 1992.

· SMTP [RFC 2821] Simple Mail Transfer Protocol.

· NFS [RFC 3010] NFS version 4 Protocol.

NOTE: Socket definition test places an indirect requirement for protocol interoperability via

LSB.

Note: See http://www.networksorcery.com/enp/Protocol.htm for more information on RFC.

2.4 Java Support

2.4.1 Java Virtual Machine (JVM)

The vendor shall provide a JVM implementation that will comply with the following JVM specification located at: http://java.sun.com/docs/books/vmspec/

2.4.2 Java Core

The platform must provide full support for the Java core specifications

http://java.sun.com/j2se/
http://developer.java.sun.com/developer/infodocs/
3. Government Supplied Kernel Source (GSKS) Code Compliance Criteria

The Government Supplied Kernel Source (GSKS) code implements functionality not available on commercial platforms. The Government supplied source code implementation assures that human-computer interfaces are functionally identical across multiple applications platforms. This tends to minimize training costs and potential for operator error.

The Government Supplied Kernel Source (GSKS) code contains 178,000 lines of code, which break down as follows:

· System management Services & Security Management Services have 22,000 lines of Java, 22,000 lines of C and 4000 lines of shell script.

· The COE Installer & Developers Toolkit has 130,000 lines of C and C++. (Will be changed when Java installer is available)

The following software elements described in the “COE 4.2.0.0P6 Build List” are currently implemented by the GSKS and shall be ported by the vendor to the Candidate Platform. The full set of tools called for in the COE I&RTS are not yet implemented and thus the set of GSKS code will expand as more tools become available. The current set of software elements include:

3.1 Print Services

Provides the basic heterogeneous print capability of the system. It provides such functions as user selection of a default printer, printer administration, and a common way of accessing print resources from an application program. It also includes print queue management and remote printer administration.

Note: The reference implementation DISA uses for print services is based on the Common UNIX Printing System (CUPS) which is described at and available from www.cups.org. CUPS is open source software provided under the terms of the GNU General Public License and GNU Library General Public License. It is based on the following Internet Printing Protocol (IPP) standards:

· RFC 2991 IPP/1.1: Model and Semantics (published Sept 00)

· RFC 2910 IPP/1.1: Encoding and Transport (published Sept 00)

· Internet Printing Protocol/1.1: Implementer’s Guide (Sent to IESG, last update 29Jun00)

· RFC 3239 IPR: Requirements for Job, Printer and Device Administrative Operations

3.2 System Management Services

Government supplied software interfaces (GSKS) with implementations supplied by commercial operating system vendors for the functions listed below. System management functions required as part of a complete kernel platform include:

- Network Management

-- Hosts

-- Available Services

-- DNS Administration

-- System Name / IP Address Update

-- Routing Administration

- Disk Management

- System Shutdown / Reboot

3.3 Accounts & Profile Manager (APM)

Used to set profile configurations, create or edit local and global user profiles, and create or edit local and global user accounts. This software also manages "features" and assigns them to profiles. Finally, the APM also manages the systems that are part of an APM Administrative Domain.

The security administrator’s account group sets the security administrator’s environment in order to execute the profiles and accounts. The Security Administration function also provides a facility to update internal profile and user account data structures via a command line interface. During initiation of a COE session based on user-selected roles, APM will establish appropriate session characteristics.

APM administers a Network Domain, precluding the need for a distributed name service such as Sun Microsystems’ NIS+. Commercial products (including NIS+) can be used but are not needed for an APM Administrative Domain. Source code is provided for the NIS+ Admin Segment.

3.4. Documentation

All COE required documentation is now supplied in HTML format for on-line browsing as well as in PDF format for printing.

3.5. Segment Installer

The COE Java installer will be provided as Government Furnished Software (GFS).
3.6. COE Run-Time Tools

The system administrator uses the COE Runtime Tools support to install, configure, and de-install systems. The tools also provide the developers with a means to communicate with the operator during segment installation. These tools include:

COE_add_segment_features
Adds one or more features to a segment installed on the system.

COEAskUser
Display a message to the user, and have the user click on a button (Yes/No, True/False, Accept/Cancel, etc.) in response to the message.

COE_feature_enabled
Determines whether a specified segment feature is currently enabled in the user's current login session.
COEFindSeg
Return information about a requested segment. The tool sets status and writes the pathname, segment name, segment prefix, and segment type information to stdout.

COEGetProcessGroup
Return the current setting of a process group.

COE_get_features
Return the list of features assigned to a profile.

COEInstaller
Display a list of variants or segments that may be installed from tape, disk, or other electronic media. It is normally executed by an operator who selects it from a System Administrator menu to install or de-install segments.

COEInstError
Display an error message to the user from within a Pre-Install, Post-Install, or De-Install script signaling installation termination or de-installation of the segment.

COEListSegments
Displays a list of segments that are installed on the system.

COEListSegs
Reads and outputs information on installed segments from a computer.

COEMsg
Display a message to the user and have the user click on the “OK” button to continue. The tool may be used by the Pre-Install, Post-Install, and De-Install scripts.

COEPrompt
Display a message to the user and have the user enter a response to the message. The tool may be used by the Pre-Install, Post-Install, and De-Install scripts.

COEPromptPasswd
Prompt user to enter a password. The tool may be used by the Pre-Install, Post-Install, and De-Install scripts.

COERegisterInterfaceEngine
Prompts the user to enter a password.

COESetProcessGroup
Changes the current setting of a process group.

COESegInstall
Allows users to install a segment that already exists on disk without asking the user for input during installation. The COESegInstall API is essentially a stand-alone binary that can be executed from the command line, from a shell script, or from within an executable program. The program was developed to allow users to install a segment that already exists on disk without asking the user for input during installation. The API call was implemented as a binary to allow programmers to use the function in any type of program (e.g., shell script, binary executable, or stand-alone tool) rather than tying it specifically to a limited set of C or X-window library calls.

COEUpdateHome
Update the home environment variable within a script file to point to where a segment was actually installed.

3.7. COE Developers Tools

COE Developers' Tools support application software development and delivery, but are not delivered to operational sites. All interfaces to these tools are at the command line; none of them have a GUI interface. These tools include:

CalcSpace
computes the space required for the segment specified and updates the hardware descriptor accordingly. The segment referred to must not be compressed and must not contain any files that do not belong with the segment (e.g., source code) at run-time. The amount of space required is written to stdout in K bytes.

CanInstall
tests a segment to see if it can be installed, which means that all required segments must already be on the disk, and the disk cannot have any conflicting segments.

ConvertSeg
examines segment descriptors and converts them to the latest format. The original segment descriptor directory is not modified. The output is in a directory created by the tool and called SegDescrip.NEW. This directory will be located directly underneath the segment’s home directory at the same level as SegDescrip. ConvertSeg is not location sensitive and may be moved to any directory desired for development.

MakeAttribs
creates the descriptor file FileAttribs. It recursively traverses every subdirectory beneath the segment home directory and creates a file containing permits, owner, group, and filename information.

MakeInstall
writes one or more segments to an installation medium, or packages the segments for distribution over the SIPRNET. MakeInstall checks to see if VerifySeg has been run successfully on each of the segments, and aborts with an error if it has not.

TestInstall
temporarily installs a segment that already resides on disk. There must be no other COE processes running when TestInstall is run. The reason for this restriction is that the tool may modify COE files already in use with unpredictable results.

TestRemove
removes a segment that was installed by TestInstall. There must be no other COE processes running when TestRemove is run. The reason for this restriction is that the tool may modify COE files already in use with unpredictable results.

TimeStamp
puts the current time and date into the VERSION descriptor.

VerifySeg
validates that a segment complies with the rules for defining a segment. It uses information in the SegDescrip subdirectory and must be run whenever the segment is modified.

VerUpdate
updates the segment version number, date, and time in the VERSION descriptor.

3.8. COE Application Programmer Interfaces (APIs)

The following APIs are implemented in the government supplied source code. The syntax and action associated with these interfaces must be preserved as described in: "Programmer's Guide and Reference Manual (PGRM) for Kernel", Kernel Version 4.2.0.0, dated 4 Feb 2000.

3.8.1 COE User Profiles APIs

The User Profiles APIs provide utilities to access different types of user profile information. A profile is the basic unit of information that defines a functional activity within a site. As profiles are defined, they are associated with a set of applications, menu options, object permissions, and other items required to support an operational function. When users are added into a COE network, system administrators also assign them to those profiles they need to support their functional tasks. The COE Kernel provides a User Profile database in which to store information about users, profiles, and applications. The COE Kernel also provides the User Profile APIs to access the database. When a user logs in to a COE workstation, one or more user profiles are selected and activated. The profile selections may default to the last setting held during a session or they can be set explicitly via a tool presented to the user at login. After the login process has completed, the user obtains access to the applications assigned to the active profile(s). The COE Kernel provides the Current Selection APIs to set and query the set of active profile selections.

Under the default Kernel configuration, any number of users can actively select any profile. However, some sites may require a profile to be held by at most one user at any time. To satisfy this requirement, the optional profile locking capability is implemented. When a user selects a profile, that profile is locked so no other user may select it until it is released. The COE Kernel provides the Profile Locking APIs to set and query profile lock states.
NOTE: These APIs may be deprecated for COE 5.0 Kernel

3.8.2. User Data APIs

The User Data APIs provide a means for modifying and accessing information stored in the User Data table in the database. (6 API calls)

3.8.3. Profile Data APIs

The Profile Data APIs provide a means for modifying and accessing information stored in the Profile Data table in the database. (5 API calls)

3.8.4. User/Profile Data APIs

The User/Profile Data APIs provide a means for modifying and accessing information stored in the User/Profile Data table in the database. (3 API calls)

3.8.5. Application Data APIs

The Application Data APIs provide a means for modifying and accessing information stored in the Application Data table in the database. (3 API calls)

3.8.6. Profile/Application Data APIs

The Profile/Application Data APIs provide a means for modifying and accessing information stored in the Profile/Application Data table in the database. (3 API calls)

3.8.7. Current Profile Selection APIs

The Current Profile Selection APIs provide the means to access or change the user's set of currently selected or active profiles. (1 API call)

3.8.8. Profile Locking APIs

The COE Kernel supports the option to lock profiles to prevent an individual profile from being selected or assumed by a second user, thus locking the profile.

NOTE: The Profile Locking APIs do not function unless a profile locking segment is installed on the system. (4 API calls)

3.8.9. Miscellaneous APIs

Miscellaneous APIs are designed to support the other APIs. (2 API calls)

3.8.10. Common Data Store APIs

The Common Data Store (CDS) APIs are C shared library utilities to add, delete, modify and retrieve data from the Common Data Store. The Common Data Store has four distinct areas: (1) local host public data, (2) master host public data, (3) local host private data, and (4) user public data. Public data may be written by the owner and read by anyone. Private data may be read and written only by the owner. Local host and master host data are owned by the privileged user root on UNIX. Each user has their own user public data area in CDS. Two types of data may be stored in CDS: class data and object data. Class data defines a template that objects belonging to the class must match. Object data may be instances of a particular class. The class has a name and a list of attributes. Each attribute is specified to be mandatory or optional. All objects within a class must provide a value for each mandatory attribute. An object within a class may provide a value for any optional attribute. An object within a class may not provide a value for an attribute that is not defined for the class. Classes and objects are conceptually arranged in a hierarchy. The hierarchy uses standard UNIX directory notation. The class name specifies which CDS area the data will be part of.

For more information on the available types of CDS areas, refer to the "COE Security Administrator's Manual (SECAM) for Kernel".

Objects may be created that are not part of a defined class. Classless objects may have any attributes desired. Even though the object is not part of a defined class, it is still considered to be within a class. The notion of a fully-qualified object name (the object name and its class name taken together) permits the existence of multiple objects with the same name, provided that they are in separate classes. Note that it does not matter whether the object's class actually exists. The object myObject in the class /myClass is distinct from the object myObject in the class /myOtherClass/SubClass, regardless of whether the two classes really exist in CDS.

Finally, since each user has their own public CDS data area, classes and objects that exist in one user's CDS area are distinct from classes and objects in another user's CDS area. The value of the object path in class /environment_variables may be different for each user, or the object may not be defined at all for a particular user. (14 APIs calls)

3.8.11. COE Java Feature APIs

The COE Java Feature API Toolkit provides developers with an interface to the COE Feature APIs from the Java programming language. A Java program can link with a public API to modify and retrieve a user's feature information. COE Helper Function API routines are available for display or logging output. (5 APIs).

4. Security Compliance Criteria
4.1 Security Evaluation

This document identifies security-related criteria for a Linux-based COE. Service, Agency and system-unique requirements are outside the scope of this document, as are the overall security requirements of systems built using COE Kernel Platforms. These criteria are drawn from “Defense Information Infrastructure (DII) Common Operating Environment (COE) Security Software Requirements Specification (SRS)”, Version 4.1, dated 15 October 1999.

In some cases, SRS text applies to system elements beyond the applications platform. In these cases an interpretation of the SRS text is required, to clarify the applications platform-related aspect of the text. Where interpretation is provided, the text may be found in the table in Appendix E, Part 1 in the comment column next to the requirement. The numbering of security requirements from the SRS is retained in the Appendix E, Part 1 table as an aid to traceability. A discussion of the password policy reflected by these requirements may be found in the Security Features Developers Guide, paragraph 4.1.3, “Password Policy”.

This evaluation verifies the presence and configuration of basic COE Kernel security features and capabilities. These security features and capabilities are grouped into the following categories:

1. Identification and Authentication (I&A)

2. Security Audit

3. Service Availability

4. Discretionary Access Control

5. Markings

6. Object Reuse

7. Data Confidentiality

8. System Integrity

9. System Architecture

10. Trusted Facility Management

11. Resource Availability

12. Other Requirements

Note that Combatant Commanders, Services, and Agencies who develop and install systems require additional security measures.

4.2 Security Configuration

Sample generic security Test Suites are available at http://www.openchannelfoundation.org/projects/HOSTS.

The security configuration of the platform shall be as specified in SPCONFGD template.

NOTE: DISA will provide Kick Start file.

Security criteria supporting this document do not replace or satisfy security testing required by Department of Defense Directive 5200.28 (1988).

 5. Interoperability Demonstration Criteria

The functionality listed below is the minimum interoperability criteria for a LINUX COE Platform. A “human computer interface” either command line or graphical user interface (GUI) must be provided for the functionality listed below.

Candidate COE Windows Platform must demonstrate the following:

5.1 TCP/IP “Ping” Interoperability

The Ping utility sends a request for simple acknowledgment and displays the result to the user. The DNS utility “nslookup” is exercised to demonstrate that the user is able to successfully interface with one or more systems that are remote to the unit under test. This successful communication implies that the TCP/IP protocol stack and sockets are operational and gives a very simple verification that they are functioning properly.

5.2 Domain Name Service (DNS) Interoperability

Demonstration shows that hostnames are resolved via DNS and can be converted from an IP address to a fully qualified domain name. Using Internet network administration tools, testers request translation of known remote domain names to Internet Protocol addresses.

5.3 File Transfer Protocol (FTP) Interoperability

Test files (both ASCII and binary) are sent to and retrieved from a separate system through FTP.

5.4. Network File System (NFS) Interoperability

This demonstration provides simple verification that the BSD sockets are operational and that the routines are functioning properly.

5.5 Electronic Mail Interoperability

An electronic mail message is read in from a file, sent to an account on a separate system and is reflected back to the Candidate Platform. The returned message is displayed and saved to a file.

Note this test should be performed for: SMTP, POP, and IMAP protocol
5.6 World Wide Web (WWW) Interoperability

The demonstration of WWW services uses an HTTP 1.0 conforming web browser to download a series of HTML 4.0 compliant test pages to the Candidate Platform from a separate system and displays them. The test pages exercise key HTML and HTTP capabilities.

NOTE: The Web Browser is supplied by the vendor as part of the validation suite, not as part of the kernel platform software.
12

Draft COE LPC LPC-

15Jul02
LPC-15

