[image: image3.png]

[image: image2.png]

Appendix WPC

Windows Platform Compliance Criteria

[image: image1.png]

18 September 2002

DRAFT

The following text identifies specific criteria that must be satisfied for Windows Platform Compliance (WPC).

41. COE Windows Platform Compliance Criteria

41.1 COE Integration and Run-Time Specification (I&RTS) Compliance Criteria

42. Commercial Specification Compliance Criteria

52.1 Application Program Interface

72.2 Microsoft Data Access Components (MDAC) SDK

72.3 Human-Computer Interface (HCI)

72.5 Windows Management Instrumentation

72.6 Communications Service Interface

92.7 JAVA Support

93. Government Supplied Kernel Source (GSKS) Code Compliance Criteria

93.1 Print Services

93.2 System Management Services

93.3 Accounts & Profile Manager (APM)

103.4 Documentation

103.5 Segment Installer

103.6 COE Run-Time Tools

103.7 COE Developers Tools

103.8 COE Application Programmer Interfaces (APIs)

114. Security Compliance Criteria

124.1 Security Evaluation

124.2 Security Configuration

125. Interoperability Demonstration Criteria

125.1 TCP/IP “Ping” Interoperability

125.2 Domain Name Service (DNS) Interoperability

135.3 File Transfer Protocol (FTP) Interoperability

135.4 Network File System (NFS) Interoperability

135.5 Electronic Mail Interoperability

135.6 World Wide Web (WWW) Interoperability

1. COE Windows Platform Compliance Criteria

The following text identifies specific criteria that must be satisfied by Microsoft Windows operating systems (OS) to meet COE Platform Compliance. The intent of the COE compliance criteria is to clearly identify to Microsoft the following building blocks the COE requires to be present and supported:

· An Architecture: A precisely defined and JTA-compliant architecture for how system components interact and fit together.

· A Runtime Environment: A standard runtime operating environment that includes “look and feel,” operating system, and windowing environment standards. Since no single runtime environment is possible in practice, the architecture provides facilities for a developer to extend the environment in such a way as to not conflict with other developers.

· A Data Environment: A standard data environment that prescribes the rules whereby applications can share data with other applications.

· A Set of APIs: A collection of interfaces for accessing components.

· A Set of Standards and Specifications: A set of rules that describe how to use the runtime environment, how to construct segments, how to create a GUI, etc.

· A Development Methodology: A process for developing, integrating, and distributing the system and a process for sharing components with other developers. The COE emphasizes and encourages incremental development that has the advantage of quickly producing usable functionality.

The above items allow vendors developing COE infrastructure components and mission-applications to know the building blocks, distributed by Microsoft that they use will work on all COE compliant Windows OSs.

The compliance criteria do not in anyway precludes new features and functionality from being inserted into new or existing Windows OSs. Nor is Microsoft discouraged from extending the building blocks. The idea is to provide a standard environment, a set of standard off-the-shelf components, and a set of programming standards that works in conjunction with a system that describes how to new functionality is systematically added or deprecated from the environment.

1.1 COE Integration and Run-Time Specification (I&RTS) Compliance Criteria

The Candidate Platform shall comply or be capable of complying with the relevant I&RTS requirements applicable to the 8 levels of conformance. These criteria include all platform specific requirements in the document, with emphasis on those identified in the I&RTS Appendix B checklist.

2. Commercial Specification Compliance Criteria

COE Windows Platform Compliance requires the Windows Platform implementation to be in conformance with the specifications in the following paragraphs. Citations below are drawn from “Department of Defense Joint Technical Architecture”, Version 3.1, 31 March 2000. The following standards contain provisions, which through direct references in this text constitute criteria for COE Platform Compliance. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties of interest are encouraged to investigate the applicability of the most recent editions of the standards listed below. However, COE Platform Compliance criteria include conformance only to the specific versions listed below.

2.1 Application Program Interface

The Candidate Platform implementation shall be in compliance with the following Application Programmer Interface specifications. The Microsoft® Windows® application programming interface (API) allows applications to exploit the power of the Windows family of operating systems. Using this API, you can develop applications that run successfully on all versions of Windows while taking advantage of the features and capabilities unique to each version.
2.1.1 Operating System API

Differences in the implementation of the programming elements depend on the capabilities of the underlying features of the platform. Window proprietary API. Need to obtain and understand the Windows Platform SDK. From the JTA V3.1, the following standard is mandated for use with operating systems running (or intended to run) Win32 Application. In addition, a segment executing on the COE Windows Platforms shall have simultaneous access to all services associated with the following standards:

· Base Services: COE Windows Platform implementation shall be in conformance with the Windows API, formally known as the Win32 API, as documented in the Platform SDK and detailed in the Core SDK. The Windows API allows COE segments to run successfully on all versions of Windows while taking advantage of the features and capabilities unique to each version.

· Common Control Library: COE Windows Platform implementation shall be in conformance with the base services APIs. The base service functions give segments access to the resources of the computer and the features of the underlying operating system, such as memory, file systems, devices, processes, and threads. A segment uses these functions to manage and monitor the resources it needs to complete its work. For example, an application uses memory management functions to allocate and free memory. Process management and synchronization functions start and coordinate the operation of multiple applications or multiple threads of execution within a single application.

· Graphics Device Interface: COE Windows Platform implementation shall be in conformance with the graphics device interface (GDI) or GDI+ APIs. The GDI provides functions and related structures that an application can use to generate graphical output for displays, printers, and other devices. Using GDI functions, segments can draw lines, curves, closed figures, paths, text, and bitmap images. The color and style of the items segments draw depends on the drawing objects — that is, pens, brushes, and fonts — that segments create. Segments can use pens to draw lines and curves, brushes to fill the interiors of closed figures, and fonts to write text. Provides the basic heterogeneous print capability of the system. It provides such functions as user selection of a default printer, printer administration, and a common way of accessing print resources from an application program. It also includes print queue management and remote printer administration.

· Network and Directory Services: COE Windows Platform implementation shall be in conformance with the network and directory functions as defined in the Networking and Directory Services documentation in the Platform SDK. The network functions allow communication between segments on different computers on a network. Segments can use these functions to create and manage connections to shared resources, such as directories and network printers, on computers in the network. COE Windows Platform Directory Services implementation shall be in conformance with the Lightweight Directory Access Protocol, version 3.

· User Interface: COE Windows Platform implementation shall be in conformance with the User Interface Design and Development documentation in the Platform SDK. The user interface functions give segments the means to create and manage a user interface. Segments use these functions to create and use windows to display output, prompt for user input, and carry out the other tasks necessary to support interaction with the user. Segments define the general behavior and appearance of their windows by creating window classes and corresponding window procedures. A window class identifies default characteristics such as whether the window processes mouse button clicks or has a menu. The corresponding window procedure contains code that defines the behavior of the window, carries out requested tasks, and processes user input. Segments generate output for a window by using the GDI functions.

· Windows Shell: COE Windows Platform implementation shall be in conformance with the shell interfaces and functions as provided in the Shell Programmers Guide and Shell Reference manual included in the Platform SDK. The Windows Shell APIs are designed to perform functions like; navigate the namespace and find files and folders, to launch applications, and create links and shortcuts.

2.1.2 Human Computer Interaction API

User Interface API Services defines the software interfaces needed to control user interfaces with an information technology system.

2.1.3 Communications Service API

Standard based communication protocols on an open platform:

· TCP/IP meets the requirements for Internet hosts (RFC 1122 and RFC 1123), as well as support for high-speed networks (RFC 1323) and Selective Acknowledgments (SACK) for better performance in ISP and wireless networks.

· Network and Dial-up Connections

· Routing APIs
· Connection Sharing
· Auto-Dial and Auto-Logon Dial
· Plug and Play

2.2 Microsoft Data Access Components (MDAC) SDK

COE Windows Platform implementation shall be in conformance with the MDAC SDK as the primary source of information and instruction for using data access technologies.

2.2.1 Lightweight Directory Access Protocol API

COE Windows Platform implementation shall be in conformance with the Lightweight Directory Access Protocol Version 3

2.2.2 Active Directory Service Interfaces

COE Windows Platform implementation shall be in conformance with the Active Directory Service Interfaces (ADSI).

2.2.3 Windows Management Instrumentation

COE Windows Platform implementation shall be in conformance with the Windows Management Instrumentation (WMI).

2.3 Human-Computer Interface (HCI)

In accordance with the JTA the COE does not allow the use of hybrid graphic user interfaces (GUIs) that mix user interface style such as Motif with Microsoft Windows. The GUI shall be based on the “Microsoft Windows User Experience, Official Guidelines for User Interface Developers and Designers,” Microsoft Press, 1999.

2.3.1 Messaging and Collaboration Services

2.4 Windows Installer Service

COE Windows Platform implementation shall be in conformance with the installation and configuration service as documented in the Platform SDK and detailed in the Windows Installer SDK.

2.5 Windows Management Instrumentation

2.6 Communications Service Interface
The Candidate Platform implementation shall be in conformance with the following Communications Service Interface specifications:

· IETF Standard 3/RFC-1122/RFC-1123, Host Requirements, October 1989.

· IETF Standard 7/RFC-793, Transmission Control Protocol, 1 September 1981. In addition, TCP shall implement the PUSH flag and the Nagle Algorithm, as defined in IETF Standard 3.

· RFC 2001, TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery Algorithms, January 24, 1997.

· IETF Standard 6/RFC-768, User Datagram Protocol, 28 August 1980.

· IETF Standard 5/ RFC-791/RFC-950/RFC-919/RFC-922/RFC-792/RFC-1112,, Internet Protocol, 1 September 1981. In addition, all implementations of IP must pass received Type-of-Service (TOS) values up to the transport layer as defined in IETF Standard 3.

· IETF Standard 13/RFC-1034/RFC-1035, Domain Name System, 1 November 1987.

· IETF Standard 9/RFC-959, File Transfer Protocol, 1 October 1985, with the following FTP commands mandated for reception: Store unique (STOU) and Abort (ABOR), and Passive (PASV).

· IETF Standard 8/RFC-854/RFC-855, TELNET Protocol, 1 May 1983.

· IETF Standard 15/RFC-1157, Simple Network Management Protocol (SNMP), 10 May 1990.

· IAB Standard 16/ RFC-1155, RFC-1212, Structure of Management Information (SNMPv1), May 1990.

· IAB Standard 17/RFC-1213, Management Information Base-II (MIB), 26 March 1991.

· RFC-951, Bootstrap Protocol, September 1, 1985.

· RFC-2132, DHCP Options and BOOTP Vendor Extensions, March 1997.

· RFC-2131, Dynamic Host Configuration Protocol, March 1997.

Windows 2000 meets or exceeds the RFCs listed above with the following exceptions:

RFC-1542, Clarifications and Extensions for the Bootstrap Protocol, October 27, 1993 (Note: Provided by third parties)

RFC 1757, Remote Network Monitoring Management Information Base (RMON Version 1), 10 February, 1995. (Note: Provided by third parties)

RFC-1305, Network Time Protocol (Version3) Specification, Implementation, and Analysis, April 9, 1992

2.7 JAVA Support

The Candidate Platform implementation shall contain or not preclude the installation and running of a JAVA Virtual Machine (JVM) that is compliant with The Java Virtual Machine Specification.

2.7.1 JAVA Virtual Machine (JVM)

2.7.2 JAVA Core

3. Government Supplied Kernel Source (GSKS) Code Compliance Criteria
The Government Supplied Kernel Source (GSKS) code implements functionality not available on many commercial platforms. The Government supplied source code implementation assures that human-computer interfaces are functionally identical across multiple applications platforms. This tends to minimize training costs and potential for operator error.

3.1 Print Services

3.2 System Management Services

Government supplied software interfaces with implementations supplied by commercial operating system vendors for the functions listed below. System management functions required as part of a complete kernel platform include:

- Network Management

-- Hosts

-- DNS Administration

-- System Name / IP Address Update

-- Routing Administration

- Disk Management

· System Shutdown / Reboot

3.3 Accounts & Profile Manager (APM)

3.4 Documentation

All COE required documentation is now supplied in HTML format for on-line browsing and in PDF format for printing.

3.5 Segment Installer

The COE Segment Installer is designed to install all COE segments. It installs segments from disk, CD, tape or the network. All the above options have to be done from a local or a remote system.

3.6 COE Run-Time Tools

The system administrator uses the COE Runtime Tools support to install, configure, and de-install systems. The tools also provide the developers with a means to communicate with the operator during segment installation.

3.7 COE Developers Tools

3.8 COE Application Programmer Interfaces (APIs)

The following APIs are implemented in the government supplied source code. The syntax and action associated with these interfaces must be preserved as described in: "Programmer's Guide and Reference Manual (PGRM) for Kernel", Kernel Version 4.2.0.0, dated 4 Feb 2000.

3.8.1 COE User Profiles APIs
The User Profiles APIs provide utilities to access different types of user profile information. A profile is the basic unit of information that defines a functional activity within a site. As profiles are defined, they are associated with a set of applications, menu options, object permissions, and other items required to support an operational function. When users are added into a COE network, system administrators also assign them to those profiles they need to support their functional tasks. The COE Kernel provides a User Profile database in which to store information about users, profiles, and applications. The COE Kernel also provides the User Profile APIs to access the database. When a user logs in to a COE workstation, one or more user profiles are selected and activated. The profile selections may default to the last setting held during a session or they can be set explicitly via a tool presented to the user at login. After the login process has completed, the user obtains access to the applications assigned to the active profile(s). The COE Kernel provides the Current Selection APIs to set and query the set of active profile selections.

Under the default Kernel configuration, any number of users can actively select any profile. However, some sites may require a profile to be held by at most one user at any time. To satisfy this requirement, the optional profile locking capability is implemented. When a user selects a profile, that profile is locked so no other user may select it until it is released. The COE Kernel provides the Profile Locking APIs to set and query profile lock states.
NOTE: These APIs may be deprecated for COE 5.0 Kernel

3.8.2 User Data APIs
The User Data APIs provide a means for modifying and accessing information stored in the User Data table in the database. (6 API calls)

3.8.3 Profile Data APIs
The Profile Data APIs provide a means for modifying and accessing information stored in the Profile Data table in the database. (5 API calls)

3.8.4 User/Profile Data APIs

The User/Profile Data APIs provide a means for modifying and accessing information stored in the User/Profile Data table in the database. (3 API calls)

3.8.5 Application Data APIs
The Application Data APIs provide a means for modifying and accessing information stored in the Application Data table in the database. (3 API calls)

3.8.6 Profile/Application Data APIs
The Profile/Application Data APIs provide a means for modifying and accessing information stored in the Profile/Application Data table in the database. (3 API calls)

3.8.7 Current Profile Selection APIs
The Current Profile Selection APIs provide the means to access or change the user's set of currently selected or active profiles. (1 API call)

3.8.8 Profile Locking APIs
The COE Kernel supports the option to lock profiles to prevent an individual profile from being selected or assumed by a second user, thus locking the profile.

NOTE: The Profile Locking APIs do not function unless a profile-locking segment is installed on the system. (4 API calls)

3.8.9 Miscellaneous APIs
Miscellaneous APIs are designed to support the other APIs. (2 API calls)

3.8.10 Common Data Store APIs

The Common Data Store APIs are C shared library utilities to add, delete, modify, and retrieve data from the Common Data Store.

3.8.11 COE Java Feature APIs
The COE Java Feature API Toolkit provides developers with an interface to the COE Feature APIs from the Java programming language. A Java program can link with a public API to modify and retrieve a user's feature information. COE Helper Function Application Program Interface (API) routines are available for displayable or logging output. (5 APIs).

4. Security Compliance Criteria

COE Windows Platform implementation shall be in conformance with the Common Criteria for Information Technology Security Evaluation. Security evaluation and criteria supporting this document does not replace or satisfy security testing required by Department of Defense Directive 5200.28 (1988).

Security evaluation and criteria supporting this document does not replace or satisfy security testing required by Department of Defense Directive 5200.28 (1988).

4.1 Security Evaluation

4.2 Security Configuration

 5. Interoperability Demonstration Criteria

The functionality listed below is the minimum interoperability criteria for a Windows COE Platform. A “human computer interface”, either command line or graphical user interface (GUI), must be provided for the functionality listed below.

Candidate COE Windows Platform must demonstrate the following:

1. TCP/IP “Ping” and Domain Naming System (DNS) Interoperability Demonstration

2. File Transfer Protocol (FTP) Interoperability Demonstration

3. Network File System (NFS) Interoperability Demonstration

4. Simple Mail Transfer Protocol (SMTP) Interoperability Demonstration

5. World Wide Web (WWW) Interoperability Demonstration

5.1 TCP/IP “Ping” Interoperability

This demonstration provides a first order verification of TCP/IP interoperability and basic BSD sockets API support for the Candidate Platform. The demonstration also provides an initial assurance of application level interoperability prior to demonstration of other services and protocols.

The Ping utility sends a request for simple acknowledgment and displays the result to the user.

The DNS utility “nslookup” is exercised to retrieve and display DNS information about the Validation Hosts’s DNS clients. DNS is used to assure connectivity to a DISA remote Validation Host and to provide a first order verification of proper TCP/IP protocol stack and sockets API operation.

5.2 Domain Name Service (DNS) Interoperability

This demonstration provides a first order verification of TCP/IP interoperability and basic BSD sockets API support for the Candidate Platform. The demonstration also provides some assurance of application level interoperability for key Domain Naming Service (DNS) services and protocols.

This demonstration shows that hostnames are resolved via DNS and can be converted from standard format to DNS format. Using Internet network administration tools, testers request translation of known remote domain names to Internet Protocol addresses.

5.3 File Transfer Protocol (FTP) Interoperability

This demonstration provides a first order verification of TCP/IP interoperability and basic BSD sockets API support for the Candidate Platform. The demonstration also provides some assurance of application level interoperability for key File Transfer Protocol (FTP) services and protocols.

The demonstration suite for ftp uses ASCII and Binary files located on the Validation Host and on the Candidate Platform. Test files located on the remote Validation Host are transferred to the Candidate Platform, and key ftp capabilities are exercised from the Candidate Platform. Test files located on the Candidate Platform are then transferred to the remote Validation Host, and key FTP capabilities are exercised from the remote Validation Host.

5.4 Network File System (NFS) Interoperability

This demonstration provides a first order verification of TCP/IP interoperability and basic BSD sockets API support for the Candidate Platform. The demonstration also provides some assurance of application level interoperability for key Network File System (NFS) services and protocols.

The demonstration suite for NFS uses ASCII and Binary files located on the Validation Host and on the Candidate Platform. A volume located on the remote Validation Host is mounted on the local Candidate Platform, and key NFS capabilities are exercised from the Candidate Platform. A volume located on the Candidate Platform is then mounted on the remote Validation Host, and key NFS server capabilities of the Candidate Platform are exercised from the Validation Host.

5.5 Electronic Mail Interoperability

 This demonstration provides a first order verification of TCP/IP interoperability and basic BSD sockets API support for the Candidate Platform. The demonstration also provides some assurance of application level interoperability for key Simple Mail Transport Protocol (SMTP) services and protocols.

The demonstration of SMTP electronic mail uses the ‘mailx’ commands required by the ISO/IEC 9945-2 (Posix) specification. An electronic mail message is read in from a file, sent to the sysadmin account on the Validation Host and is reflected back to the Candidate Platform. The returned message is displayed and saved to a file. This provides some level of assurance that the Candidate Platform can support sending, receiving, display and storage of electronic mail.

5.6 World Wide Web (WWW) Interoperability

This demonstration provides a first order verification of TCP/IP interoperability and basic BSD sockets API support for the Candidate Platform. The demonstration also provides some assurance of application level interoperability and the ability to support key Hyper-Text Transfer Protocol (HTTP) services and protocols. This procedure is not intended as a comprehensive test and only exercises a subset of TCP/IP, HTML and HTTP features.

The demonstration of WWW services uses an HTTP 1.0 conforming web browser to download a series of HTML 3.2 compliant test pages from the Candidate Platform and to display them. The test pages exercise key Hyper-Text Markup Language (HTML), HTTP and forms related capabilities.

NOTE: The Web Browser is supplied by the vendor as part of the validation suite, not as part of the kernel platform software.

12

Draft COE LPC LPC-

15Jul02
WPC-8

